scholarly journals A synopsis of factors regulating beta cell development and beta cell mass

2016 ◽  
Vol 73 (19) ◽  
pp. 3623-3637 ◽  
Author(s):  
Krishna Prasadan ◽  
Chiyo Shiota ◽  
Xiao Xiangwei ◽  
David Ricks ◽  
Joseph Fusco ◽  
...  
2018 ◽  
Vol 238 (3) ◽  
pp. R161-R171 ◽  
Author(s):  
Frank H Bloomfield

As increasing numbers of babies born preterm survive into adulthood, it is becoming clear that, in addition to the well-described risks of neurodevelopmental sequelae, there also are increased risks for non-communicable diseases, including diabetes. Epidemiological studies indicate that risks are increased even for birth at late preterm and early term gestations and for both type 1 and type 2 diabetes. Thus, factors related to preterm birth likely affect development of the fetal and neonatal beta-cell in addition to effects on peripheral insulin sensitivity. These factors could operate prior to preterm birth and be related to the underlying cause of preterm birth, to the event of being born preterm itself, to the postnatal care of the preterm neonate or to a combination of these exposures. Experimental evidence indicates that factors may be operating during all these critical periods to contribute to altered development of beta-cell mass in those born preterm. Greater understanding of how these factors impact upon development of the pancreas may lead to interventions or management approaches that mitigate the increased risk of later diabetes.


Author(s):  
Idil I. Aigha ◽  
Essam M. Abdelalim

Understanding the biology underlying the mechanisms and pathways regulating pancreatic β-cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin producing β-cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β-cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β-cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive toβ-cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β-cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1-) results in an undesirable generation of non-functional polyhormonal β-cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β-cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a mean to increase β-cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β-cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.


Author(s):  
Idil Aigha ◽  
Essam Abdelalim

Understanding the biology underlying the mechanisms and pathways regulating pancreatic β-cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin producing β-cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β-cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β-cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive toβ-cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β-cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1-) results in an undesirable generation of non-functional polyhormonal β-cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β-cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a mean to increase β-cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β-cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2124-P
Author(s):  
KEITA HAMAMATSU ◽  
HIROYUKI FUJIMOTO ◽  
NAOTAKA FUJITA ◽  
TAKAAKI MURAKAMI ◽  
MASAHARU SHIOTANI ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2145-P
Author(s):  
ELIZABETH SANCHEZ RANGEL ◽  
JASON BINI ◽  
NABEEL B. NABULSI ◽  
YIYUN HUANG ◽  
KEVAN C. HEROLD ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 366-OR
Author(s):  
GRACE H. YANG ◽  
JEE YOUNG HAN ◽  
SUKANYA LODH ◽  
JOSEPH T. BLUMER ◽  
DANIELLE FONTAINE ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2295-PUB
Author(s):  
TERESA MEZZA ◽  
PIETRO MANUEL FERRARO ◽  
GIANFRANCO DI GIUSEPPE ◽  
CHIARA MARIA ASSUNTA CEFALO ◽  
SIMONA MOFFA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document