scholarly journals NKX6.1 Transcription Factor: A Crucial Regulator of Pancreatic β-Cell Development, Identity, and Proliferation

Author(s):  
Idil I. Aigha ◽  
Essam M. Abdelalim

Understanding the biology underlying the mechanisms and pathways regulating pancreatic β-cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin producing β-cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β-cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β-cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive toβ-cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β-cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1-) results in an undesirable generation of non-functional polyhormonal β-cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β-cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a mean to increase β-cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β-cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.

Author(s):  
Idil Aigha ◽  
Essam Abdelalim

Understanding the biology underlying the mechanisms and pathways regulating pancreatic β-cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin producing β-cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β-cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β-cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive toβ-cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β-cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1-) results in an undesirable generation of non-functional polyhormonal β-cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β-cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a mean to increase β-cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β-cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Idil I. Aigha ◽  
Essam M. Abdelalim

Abstract Understanding the biology underlying the mechanisms and pathways regulating pancreatic β cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin-producing β cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive to β cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1−) results in an undesirable generation of non-functional polyhormonal β cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a means to increase β cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.


2021 ◽  
Author(s):  
Kazuno Omori ◽  
Akinobu Nakamura ◽  
Hideaki Miyoshi ◽  
Yuki Yamauchi ◽  
Shinichiro Kawata ◽  
...  

Efficacy of glucokinase activation on glycemic control is limited to a short-term period. One reason might be related with the excess glucose signalling by glucokinase activation towards beta-cells. In this study, we investigated the effect of glucokinase haploinsufficiency on glucose tolerance as well as beta-cell function and mass using a mouse model of type 2 diabetes. Our results showed that <i>db/db</i> mice with glucokinase haploinsufficiency presented amelioration of glucose tolerance by augmented insulin secretion associated with the increase in beta-cell mass when compared with <i>db/db</i> mice. Gene expression profiling, and immunohistochemical and metabolomic analyses revealed that glucokinase haploinsufficiency in the islets of <i>db/db</i> mice was associated with lower expression of stress-related genes, higher expression of transcription factors involved in the maintenance and maturation of beta-cell function, less mitochondrial damage, and a superior metabolic pattern. These effects of glucokinase haploinsufficiency could preserve beta-cell mass under diabetic conditions. These findings verified our hypothesis that optimizing excess glucose signalling in beta-cells by inhibiting glucokinase could prevent beta-cell insufficiency, leading to improving glucose tolerance in diabetes status by preserving beta-cell mass. Therefore, glucokinase inactivation in beta-cells could, paradoxically, be a potential strategy for the treatment of type 2 diabetes.


2020 ◽  
Vol 295 (17) ◽  
pp. 5685-5700
Author(s):  
Irina X. Zhang ◽  
Jianhua Ren ◽  
Suryakiran Vadrevu ◽  
Malini Raghavan ◽  
Leslie S. Satin

Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress.


2021 ◽  
Author(s):  
Kazuno Omori ◽  
Akinobu Nakamura ◽  
Hideaki Miyoshi ◽  
Yuki Yamauchi ◽  
Shinichiro Kawata ◽  
...  

Efficacy of glucokinase activation on glycemic control is limited to a short-term period. One reason might be related with the excess glucose signalling by glucokinase activation towards beta-cells. In this study, we investigated the effect of glucokinase haploinsufficiency on glucose tolerance as well as beta-cell function and mass using a mouse model of type 2 diabetes. Our results showed that <i>db/db</i> mice with glucokinase haploinsufficiency presented amelioration of glucose tolerance by augmented insulin secretion associated with the increase in beta-cell mass when compared with <i>db/db</i> mice. Gene expression profiling, and immunohistochemical and metabolomic analyses revealed that glucokinase haploinsufficiency in the islets of <i>db/db</i> mice was associated with lower expression of stress-related genes, higher expression of transcription factors involved in the maintenance and maturation of beta-cell function, less mitochondrial damage, and a superior metabolic pattern. These effects of glucokinase haploinsufficiency could preserve beta-cell mass under diabetic conditions. These findings verified our hypothesis that optimizing excess glucose signalling in beta-cells by inhibiting glucokinase could prevent beta-cell insufficiency, leading to improving glucose tolerance in diabetes status by preserving beta-cell mass. Therefore, glucokinase inactivation in beta-cells could, paradoxically, be a potential strategy for the treatment of type 2 diabetes.


2019 ◽  
Vol 243 (1) ◽  
pp. 1-14 ◽  
Author(s):  
David W Scoville ◽  
Kristin Lichti-Kaiser ◽  
Sara A Grimm ◽  
Anton M Jetten

The Krüppel-like zinc finger transcription factor Gli-similar 3 (GLIS3) plays a critical role in the regulation of pancreatic beta cells, with global Glis3-knockout mice suffering from severe hyperglycemia and dying by post-natal day 11. In addition, GLIS3 has been shown to directly regulate the early endocrine marker Ngn3, as well as Ins2 gene expression in mature beta cells. We hypothesize that GLIS3 regulates several other genes critical to beta cell function, in addition to Ins2, by directly binding to regulatory regions. We therefore generated a pancreas-specific Glis3 deletion mouse model (Glis3Δ panc ) using a Pdx1-driven Cre mouse line. Roughly 20% of these mice develop hyperglycemia by 8 weeks and lose most of their insulin expression. However, this did not appear to be due to loss of the beta cells themselves, as no change in cell death was observed. Indeed, presumptive beta cells appeared to persist as PDX1+/INS−/MAFA−/GLUT2− cells. Islet RNA-seq analysis combined with GLIS3 ChIP-seq analysis revealed apparent direct regulation of a variety of diabetes-related genes, including Slc2a2 and Mafa. GLIS3 binding near these genes coincided with binding for other islet-enriched transcription factors, indicating these are distinct regulatory hubs. Our data indicate that GLIS3 regulates not only insulin expression, but also several additional genes critical for beta cell function.


2021 ◽  
Author(s):  
Hossam Montaser ◽  
Kashyap A Patel ◽  
Diego Balboa ◽  
Hazem Ibrahim ◽  
Väinö Lithovius ◽  
...  

MANF is an endoplasmic reticulum resident protein that plays a crucial role in attenuating ER stress responses. Although MANF is indispensable for the survival and function of mouse beta cells, its precise role in human beta cell development and function is unknown. Herein, we show that lack of MANF in humans results in diabetes due to increased ER stress leading to impaired beta cell function. We identified two patients from different families with childhood diabetes and a neurodevelopmental disorder associated with homozygous loss-of-function mutations in the <i>MANF</i> gene. To study the role of MANF in human beta cell development and function, we knocked out the <i>MANF </i>gene in human embryonic stem cells and differentiated them into pancreatic endocrine cells. Loss of <i>MANF</i> induced mild ER stress and impaired insulin processing capacity of beta cells <i>in vitro</i>. Upon implantation to immunocompromised mice, the MANF knockout grafts presented elevated ER stress and functional failure, particularly in diabetic recipients. By describing a new form of monogenic neurodevelopmental diabetes syndrome caused by disturbed ER function, we highlight the importance of adequate ER stress regulation for proper human beta cell function and demonstrate the crucial role of MANF in this process.


2021 ◽  
Author(s):  
Hossam Montaser ◽  
Kashyap A Patel ◽  
Diego Balboa ◽  
Hazem Ibrahim ◽  
Väinö Lithovius ◽  
...  

MANF is an endoplasmic reticulum resident protein that plays a crucial role in attenuating ER stress responses. Although MANF is indispensable for the survival and function of mouse beta cells, its precise role in human beta cell development and function is unknown. Herein, we show that lack of MANF in humans results in diabetes due to increased ER stress leading to impaired beta cell function. We identified two patients from different families with childhood diabetes and a neurodevelopmental disorder associated with homozygous loss-of-function mutations in the <i>MANF</i> gene. To study the role of MANF in human beta cell development and function, we knocked out the <i>MANF </i>gene in human embryonic stem cells and differentiated them into pancreatic endocrine cells. Loss of <i>MANF</i> induced mild ER stress and impaired insulin processing capacity of beta cells <i>in vitro</i>. Upon implantation to immunocompromised mice, the MANF knockout grafts presented elevated ER stress and functional failure, particularly in diabetic recipients. By describing a new form of monogenic neurodevelopmental diabetes syndrome caused by disturbed ER function, we highlight the importance of adequate ER stress regulation for proper human beta cell function and demonstrate the crucial role of MANF in this process.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 286
Author(s):  
Nicola Marrano ◽  
Rosaria Spagnuolo ◽  
Giuseppina Biondi ◽  
Angelo Cignarelli ◽  
Sebastio Perrini ◽  
...  

Extra virgin olive oil (EVOO) is a major component of the Mediterranean diet and is appreciated worldwide because of its nutritional benefits in metabolic diseases, including type 2 diabetes (T2D). EVOO contains significant amounts of secondary metabolites, such as phenolic compounds (PCs), that may positively influence the metabolic status. In this study, we investigated for the first time the effects of several PCs on beta-cell function and survival. To this aim, INS-1E cells were exposed to 10 μM of the main EVOO PCs for up to 24 h. Under these conditions, survival, insulin biosynthesis, glucose-stimulated insulin secretion (GSIS), and intracellular signaling activation (protein kinase B (AKT) and cAMP response element-binding protein (CREB)) were evaluated. Hydroxytyrosol, tyrosol, and apigenin augmented beta-cell proliferation and insulin biosynthesis, and apigenin and luteolin enhanced the GSIS. Conversely, vanillic acid and vanillin were pro-apoptotic for beta-cells, even if they increased the GSIS. In addition, oleuropein, p-coumaric, ferulic and sinapic acids significantly worsened the GSIS. Finally, a mixture of hydroxytyrosol, tyrosol, and apigenin promoted the GSIS in human pancreatic islets. Apigenin was the most effective compound and was also able to activate beneficial intracellular signaling. In conclusion, this study shows that hydroxytyrosol, tyrosol, and apigenin foster beta-cells’ health, suggesting that EVOO or supplements enriched with these compounds may improve insulin secretion and promote glycemic control in T2D patients.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Elisa Fernández-Millán ◽  
Carlos Guillén

Type 2 diabetes (T2D) results from impaired beta-cell function and insufficient beta-cell mass compensation in the setting of insulin resistance. Current therapeutic strategies focus their efforts on promoting the maintenance of functional beta-cell mass to ensure appropriate glycemic control. Thus, understanding how beta-cells communicate with metabolic and non-metabolic tissues provides a novel area for investigation and implicates the importance of inter-organ communication in the pathology of metabolic diseases such as T2D. In this review, we provide an overview of secreted factors from diverse organs and tissues that have been shown to impact beta-cell biology. Specifically, we discuss experimental and clinical evidence in support for a role of gut to beta-cell crosstalk, paying particular attention to bacteria-derived factors including short-chain fatty acids, lipopolysaccharide, and factors contained within extracellular vesicles that influence the function and/or the survival of beta cells under normal or diabetogenic conditions.


Sign in / Sign up

Export Citation Format

Share Document