Characterization of Transfer Functions of Pritchard–Salamon or Other Realizations with a Bounded Input or Output Operator

2005 ◽  
Vol 54 (3) ◽  
pp. 427-440 ◽  
Author(s):  
Kalle M. Mikkola
2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Sina Hamian ◽  
Andrew M. Gauffreau ◽  
Timothy Walsh ◽  
Jungchul Lee ◽  
Keunhan Park

This paper reports the frequency-dependent electrothermal behaviors of a freestanding doped-silicon heated microcantilever probe operating under periodic (ac) Joule heating. We conducted a frequency-domain finite-element analysis (FEA) and compared the steady periodic solution with 3ω experiment results. The computed thermal transfer function of the cantilever accurately predicts the ac electrothermal behaviors over a full spectrum of operational frequencies, which could not be accomplished with the 1D approximation. In addition, the thermal transfer functions of the cantilever in vacuum and in air were compared, through which the frequency-dependent heat transfer coefficient of the air was quantified. With the developed FEA model, design parameters of the cantilever (i.e., the size and the constriction width of the cantilever heater) and their effects on the ac electrothermal behaviors were carefully investigated. Although this work focused on doped-Si heated microcantilever probes, the developed FEA model can be applied for the ac electrothermal analysis of general microelectromechanical systems.


Instruments ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 22
Author(s):  
Yu-Chung Lin ◽  
Joseph V. Sinfield

The emergence of a wide variety of relatively low-cost compact spectrometers has led to an increase in the use of spectroscopic techniques by researchers in a broad array of fields beyond those that have traditionally employed these analytical methods. While the fundamental elements and functions of Raman systems are generally consistent, the specific components that compose a system may vary in number, design, and configuration, and researchers often modify off-the-shelf spectrometers for unique applications. Understanding the effect of instrument design and components on acquired information is thus crucial and provides the prospect to optimize the system to individual needs and to properly compare results obtained with different systems while also reducing the potential for unintended misinterpretation of data. This paper provides a practical treatment of the influences in a typical compact spectroscopy system that can impact the extent to which the output of the system is representative of the observed environment, a relationship that in measurement science is classically termed the system transfer function. For clarity, the transfer function is developed in terms of traditional Raman output parameters, namely intensity, wavelength, and time.


1986 ◽  
Vol 23 (A) ◽  
pp. 23-39 ◽  
Author(s):  
M. Deistler

Linear dynamical systems where both inputs and outputs are contaminated by errors are considered. A characterization of the sets of all observationally equivalent transfer functions is given, the role of the causality assumption is investigated and conditions for identifiability in the case of Gaussian as well as non-Gaussian observations are derived.


Radio Science ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xianming Qing ◽  
Zhi Ning Chen ◽  
Michael Yan Wah Chia

1993 ◽  
Vol 175 (17) ◽  
pp. 5529-5538 ◽  
Author(s):  
J Hagège ◽  
J L Pernodet ◽  
G Sezonov ◽  
C Gerbaud ◽  
A Friedmann ◽  
...  

Author(s):  
Pierangelo Masarati ◽  
Giuseppe Quaranta ◽  
Michael Jump

Pilot–vehicle interaction represents a critical aspect of aircraft design. Very low-frequency, voluntary although unintentional interaction has been extensively investigated in fixed and rotary wing aeromechanics. Higher frequency, involuntary and thus passive interaction received similar attention in fixed wing aeromechanics, but not as much for rotary wing. The results of an experimental campaign for the characterization of the passive behaviour of rotorcraft pilots' biomechanics are presented. A flight simulator has been used to excite human subjects. The accelerations of their limbs and the motion induced by the vibrations of the limbs in the control inceptors have been recorded. The vertical, longitudinal and lateral directions have been independently excited, while measuring the motion of the arm directly involved in the control inceptor mostly affected by motion in each direction, namely the left and the right arms for the collective and the cyclic sticks, respectively. The frequency domain response has been evaluated; resulting noteworthy behaviour is discussed, addressing its relevance in modelling the passive behaviour of pilots within the bioaeroservoelastic rotorcraft analysis. The measurements of human body impedance, under realistic cockpit motion, are used to identify the direct transfer functions between the motion of the seat and the controls inadvertently fed back into the rotorcraft.


Sign in / Sign up

Export Citation Format

Share Document