Sea Surface Heights and Marine Gravity Determined from SARAL/AltiKa Ka-band Altimeter Over South China Sea

Author(s):  
Chengcheng Zhu ◽  
Xin Liu ◽  
Jinyun Guo ◽  
Shengwen Yu ◽  
Yupeng Niu ◽  
...  
2019 ◽  
Vol 219 (2) ◽  
pp. 1056-1064 ◽  
Author(s):  
Chengcheng Zhu ◽  
Jinyun Guo ◽  
Cheinway Hwang ◽  
Jinyao Gao ◽  
Jiajia Yuan ◽  
...  

SUMMARY HY-2A is China's first satellite altimeter mission, launched in Aug. 2011. Its geodetic mission (GM) started from 2016 March 30 till present, collecting sea surface heights for about five 168-d cycles. To test how the HY-2A altimeter performs in marine gravity derivation, we use the least-squares collocation method to determine marine gravity anomalies on 1′ × 1′ grids around the South China Sea (covering 0°–30°N, 105°E–125°E) from the HY-2A/GM-measured geoid gradients. We assess the qualities of the HY-2A/GM-derived gravity over different depths and areas using the bias and tilt-adjusted ship-borne gravity anomalies from the U.S. National Centers for Environmental Information (NCEI) and the Second Institute of Oceanography, Ministry of Natural Resources (MNR) of P. R. China. The RMS difference between the HY-2A/GM-derived and the NCEI ship-borne gravity is 5.91 mGal, and is 5.33 mGal when replacing the HY-2A value from the Scripps Institution of Oceanography (SIO) V23.1 value. The RMS difference between the HY-2A/GM-derived and the MNR ship-borne gravity is 2.90 mGal, and is 2.76 mGal when replacing the HY-2A value from the SIO V23.1 value. The RMS difference between the HY-2A and SIO V23.1 value is 3.57 mGal in open sea areas at least 20 km far away from the coast. In general, the difference between the HY-2A/GM-derived gravity and ship-borne gravity decreases with decreasing gravity field roughness and increasing depth. HY-2A results in the lowest gravity accuracy in areas with islands or reefs. Our assessment result suggests that HY-2A can compete with other Ku-band altimeter missions in marine gravity derivation.


2004 ◽  
Vol 49 (5) ◽  
pp. 491-498 ◽  
Author(s):  
Yanchu Li ◽  
Li Li ◽  
Chunshen Jing ◽  
Wenli Cai

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
Chunxu Zhao ◽  
Chunyan Shen ◽  
Andrew Bakun ◽  
Yunrong Yan ◽  
Bin Kang

The purpleback flying squid (Ommastrephidae: Sthenoteuthis oualaniensis) is an important species at higher trophic levels of the regional marine ecosystem in the South China Sea (SCS), where it is considered to show the potential for fishery development. Accordingly, under increasing climatic and environmental changes, understanding the nature and importance of various factors that determine the spatial and temporal distribution and abundance of S. oualaniensis in the SCS is of great scientific and socio-economic interest. Using generalized additive model (GAM) methods, we analyzed the relationship between available environmental factors and catch per unit effort (CPUE) data of S. oualaniensis. The body size of S. oualaniensis in the SCS was relatively small (<19.4 cm), with a shorter lifespan than individuals in other seas. The biological characteristics indicate that S. oualaniensis in the SCS showed a positive allometric growth, and could be suitably described by the logistic growth equation. In our study, the sea areas with higher CPUE were mainly distributed at 10°–11° N, with a 27–28 °C sea surface temperature (SST) range, a sea surface height anomaly (SSHA) of −0.05–0.05 m, and chlorophyll-a concentration (Chl-a) higher than 0.18 μg/L. The SST was the most important factor in the GAM analysis and the best fitting GAM model explained 67.9% of the variance. Understanding the biological characteristics and habitat status of S. oualaniensis in the SCS will benefit the management of this resource.


2021 ◽  
Vol 40 (7) ◽  
pp. 68-76
Author(s):  
Tao Song ◽  
Ningsheng Han ◽  
Yuhang Zhu ◽  
Zhongwei Li ◽  
Yineng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document