Complex Curves as Lines of Geometries

2016 ◽  
Vol 71 (1-2) ◽  
pp. 145-165 ◽  
Author(s):  
Olga Belova ◽  
Josef Mikeš ◽  
Karl Strambach
Keyword(s):  
2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.


1997 ◽  
Vol 11 (26n27) ◽  
pp. 3093-3124
Author(s):  
A. Marshakov

I consider main features of the formulation of the finite-gap solutions to integrable equations in terms of complex curves and generating 1-differential. The example of periodic Toda chain solutions is considered in detail. Recently found exact nonperturbative solutions to [Formula: see text] SUSY gauge theories are formulated using the methods of the theory of integrable systems and where possible the parallels between standard quantum field theory results and solutions to the integrable systems are discussed.


2001 ◽  
Vol 44 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Paul Baird

AbstractA harmonic morphism defined on $\mathbb{R}^3$ with values in a Riemann surface is characterized in terms of a complex analytic curve in the complex surface of straight lines. We show how, to a certain family of complex curves, the singular set of the corresponding harmonic morphism has an isolated component consisting of a continuously embedded knot.AMS 2000 Mathematics subject classification: Primary 57M25. Secondary 57M12; 58E20


2020 ◽  
Vol 28 (4) ◽  
pp. 247-252
Author(s):  
Alexander Lozhkin ◽  
Pavol Bozek ◽  
Konstantin Maiorov

AbstractThe geometric model accuracy is crucial for product design. More complex surfaces are represented by the approximation methods. On the contrary, the approximation methods reduce the design quality. A new alternative calculation method is proposed. The new method can calculate both conical sections and more complex curves. The researcher is able to get an analytical solution and not a sequence of points with the destruction of the object semantics. The new method is based on permutation and other symmetries and should have an origin in the internal properties of the space. The classical method consists of finding transformation parameters for symmetrical conic profiles, however a new procedure for parameters of linear transformations determination was acquired by another method. The main steps of the new method are theoretically presented in the paper. Since a double result is obtained in most stages, the new calculation method is easy to verify. Geometric modeling in the AutoCAD environment is shown briefly. The new calculation method can be used for most complex curves and linear transformations. Theoretical and practical researches are required additionally.


2010 ◽  
Vol 129-131 ◽  
pp. 235-240 ◽  
Author(s):  
Qiang Li ◽  
Zi Liang Wei ◽  
Hong Bo Yan ◽  
Hai Yan Hu

For a new type of bevel gear—logarithmic spiral bevel gear, establish its tooth direction curves and the mathematical model of tooth surface equation. With CAD software platform which can intuitive understanding of complex curves and combined with conical logarithmic spiral parameter equation build the logarithmic spiral on cone surface. Then array logarithmic spiral to make them evenly distributed in the cone surface, without any interference and to meet the strength distribution on both ends of circular truncated cone equally. Use two logarithmic spirals from different starpoint as tooth direction curves of lift and right tooth surface. Finally, use space geometric knowledge to build tooth surface equation by tooth direction curves and tooth profile curves.


1976 ◽  
Vol 153 (1) ◽  
pp. 101-117 ◽  
Author(s):  
W G Bardsley

1. The eight methods for plotting enzyme kinetic data are classified and analysed, and it is shown how, in each case, it is only possible to obtain quantitative data on the coefficients of the lowest- and highest-degree terms in the rate equation. 2. The combinations of coefficients that are accessible experimentally from limiting slopes and intercepts at both low and high substrate concentration are stated for all the graphical methods and the precise effects of these on curve shape in different spaces is discussed. 3. Ambiguities arising in the analysis of complex curves and certain special features are also investigated. 4. Four special ordering functions are defined and investigated and it is shown how knowledge of these allows a complete description of all possible complex curve shapes.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1359 ◽  
Author(s):  
Gang Hu ◽  
Huinan Li ◽  
Muhammad Abbas ◽  
Kenjiro T. Miura ◽  
Guoling Wei

The S-λ model is one of the most useful tools for shape designs and geometric representations in computer-aided geometric design (CAGD), which is due to its good geometric properties such as symmetry, shape adjustable property. With the aim to solve the problem that complex S-λ curves and surfaces cannot be constructed by a single curve and surface, the explicit continuity conditions for G1 connection of S-λ curves and surfaces are investigated in this paper. On the basis of linear independence and terminal properties of S-λ basis functions, the conditions of G1 geometric continuity between two adjacent S-λ curves and surfaces are proposed, respectively. Modeling examples imply that the continuity conditions proposed in this paper are easy and effective, which indicate that the S-λ curves and surfaces can be used as a powerful supplement of complex curves and surfaces design in computer aided design/computer aided manufacturing (CAD/CAM) system.


2018 ◽  
Vol 198 (3) ◽  
pp. 837-867
Author(s):  
Hyunuk Chung ◽  
Seheon Ham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document