Hydrologic variability effects on catches of Prochilodus nigricans in the lower Amazon

2021 ◽  
Vol 83 (2) ◽  
Author(s):  
Daniela Barros ◽  
Miguel Petrere ◽  
Leandro Castello ◽  
Paulo Brasil Santos ◽  
Davi Butturi-Gomes ◽  
...  
RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Naiah Caroline Rodrigues de Souza ◽  
◽  
Andrea Sousa Fontes ◽  
Lafayette Dantas da Luz ◽  
Sandra Maria Conceição Pinheiro ◽  
...  

ABSTRACT The flow regulation that results from the implantation of dams causes consequences to the river ecosystems due to the modification on the characteristics of the hydrologic regime. The investigation of these changes become relevant, mainly in semi-arid regions where there is a great amount of these hydraulic structures and lack of such analyzes. Considering the above, this paper aims to evaluate the Dundee Hydrological Regime Alteration Method (DHRAM) through the classification of the degree of impact of dams located on rivers Itapicuru, Paraguaçu and their tributaries, verifying the adequacy of its use to represent the semi-arid hydrologic regime. Thereby, the DHRAM was applied in three versions: considering the thresholds that define the scores to classify the degree of impact in its original set (accordingly to Black et al. (2005)); with the adjustment of those thresholds to local conditions; and, with the regrouping of variables and adjustment of thresholds. The results showed that the method in its original set is applicable to semi-arid rivers, however it tends to be very restrictive against the high natural hydrologic variability characteristic of these rivers, and it ends up pointing to a high degree of alteration for dams that are known for not causing a very siginifcant flow regulation. The DHRAM with the regrouping of variables and the adjustment of thresholds presented the classification that approached the most to the known characteristics of the studied dams, being useful for the evaluation of the impact of dams still in project, and also to guide the adoption of operating rules that minimize the most significant hydrologic alterations that are identified.


2012 ◽  
Vol 111 ◽  
pp. 95-106 ◽  
Author(s):  
Andrea L.H. Hughes ◽  
Alicia M. Wilson ◽  
James T. Morris

2006 ◽  
Vol 65 (02) ◽  
pp. 264-274 ◽  
Author(s):  
Lora R. Stevens ◽  
Jeffery R. Stone ◽  
Josh Campbell ◽  
Sherilyn C. Fritz

AbstractA 2200-yr long, high-resolution (∼5 yr) record of drought variability in northwest Montana is inferred from diatoms and δ18O values of bio-induced carbonate preserved in a varved lacustrine core from Foy Lake. A previously developed model of the diatom response to lake-level fluctuations is used to constrain estimates of paleolake levels derived from the diatom data. High-frequency (decadal) fluctuations in the de-trended δ18O record mirror variations in wet/dry cycles inferred from Banff tree-rings, demonstrating the sensitivity of the oxygen-isotope values to changes in regional moisture balance. Low frequency (multi-centennial) isotopic changes may be associated with shifts in the seasonal distribution of precipitation. From 200 B.C. to A.D. 800, both diatom and isotope records indicate that climate was dry and lake level low, with poor diatom preservation and high organic carbon: nitrogen ratios. Subsequently, lake level rose slightly, although the climate was drier and more stable than modern conditions. At A.D. 1200, lake level increased to approximately 6 m below present elevation, after which the lake fluctuated between this elevation and full stage, with particularly cool and/or wetter conditions after 1700. The hydrologic balance of the lake shifted abruptly at 1894 because of the establishment of a lumber mill at the lake's outlet. Spectral analysis of the δ18O data indicates that severe droughts occurred with multi-decadal (50 to 70 yr) frequency.


2016 ◽  
Vol 33 (3) ◽  
pp. 353-363 ◽  
Author(s):  
A. P. Rabuffetti ◽  
K. Górski ◽  
L. A. Espínola ◽  
E. Abrial ◽  
M. L. Amsler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document