Hydrologic variability and ecosystem structure

Systems ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Mahdi Boucetta ◽  
Niamat Ullah Ibne Hossain ◽  
Raed Jaradat ◽  
Charles Keating ◽  
Siham Tazzit ◽  
...  

Exponential technological-based growth in industrialization and urbanization, and the ease of mobility that modern motorization offers have significantly transformed social structures and living standards. As a result, electric vehicles (EVs) have gained widespread popularity as a mode of sustainable transport. The increasing demand for of electric vehicles (EVs) has reduced the some of the environmental issues and urban space requirements for parking and road usage. The current body of EV literature is replete with different optimization and empirical approaches pertaining to the design and analysis of the EV ecosystem; however, probing the EV ecosystem from a management perspective has not been analyzed. To address this gap, this paper develops a systems-based framework to offer rigorous design and analysis of the EV ecosystem, with a focus on charging station location problems. The study framework includes: (1) examination of the EV charging station location problem through the lens of a systems perspective; (2) a systems view of EV ecosystem structure; and (3) development of a reference model for EV charging stations by adopting the viable system model. The paper concludes with the methodological implications and utility of the reference model to offer managerial insights for practitioners and stakeholders.


2015 ◽  
Vol 23 (4) ◽  
pp. 443-460 ◽  
Author(s):  
Michael J. Lawrence ◽  
Holly L.J. Stemberger ◽  
Aaron J. Zolderdo ◽  
Daniel P. Struthers ◽  
Steven J. Cooke

War is an ever-present force that has the potential to alter the biosphere. Here we review the potential consequences of modern war and military activities on ecosystem structure and function. We focus on the effects of direct conflict, nuclear weapons, military training, and military produced contaminants. Overall, the aforementioned activities were found to have overwhelmingly negative effects on ecosystem structure and function. Dramatic habitat alteration, environmental pollution, and disturbance contributed to population declines and biodiversity losses arising from both acute and chronic effects in both terrestrial and aquatic systems. In some instances, even in the face of massive alterations to ecosystem structure, recovery was possible. Interestingly, military activity was beneficial under specific conditions, such as when an exclusion zone was generated that generally resulted in population increases and (or) population recovery; an observation noted in both terrestrial and aquatic systems. Additionally, military technological advances (e.g., GPS technology, drone technology, biotelemetry) have provided conservation scientists with novel tools for research. Because of the challenges associated with conducting research in areas with military activities (e.g., restricted access, hazardous conditions), information pertaining to military impacts on the environment are relatively scarce and are often studied years after military activities have ceased and with no knowledge of baseline conditions. Additional research would help to elucidate the environmental consequences (positive and negative) and thus reveal opportunities for mitigating negative effects while informing the development of optimal strategies for rehabilitation and recovery.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1687
Author(s):  
Richard E. Lizotte ◽  
Peter C. Smiley ◽  
Robert B. Gillespie ◽  
Scott S. Knight

Conservation agriculture practices (CAs) have been internationally promoted and used for decades to enhance soil health and mitigate soil loss. An additional benefit of CAs has been mitigation of agricultural runoff impacts on aquatic ecosystems. Countries across the globe have agricultural agencies that provide programs for farmers to implement a variety of CAs. Increasingly there is a need to demonstrate that CAs can provide ecological improvements in aquatic ecosystems. Growing global concerns of lost habitat, biodiversity, and ecosystem services, increased eutrophication and associated harmful algal blooms are expected to intensify with increasing global populations and changing climate. We conducted a literature review identifying 88 studies linking CAs to aquatic ecological responses since 2000. Most studies were conducted in North America (78%), primarily the United States (73%), within the framework of the USDA Conservation Effects Assessment Project. Identified studies most frequently documented macroinvertebrate (31%), fish (28%), and algal (20%) responses to riparian (29%), wetland (18%), or combinations (32%) of CAs and/or responses to eutrophication (27%) and pesticide contamination (23%). Notable research gaps include better understanding of biogeochemistry with CAs, quantitative links between varying CAs and ecological responses, and linkages of CAs with aquatic ecosystem structure and function.


2011 ◽  
Vol 14 (4) ◽  
pp. 723-736 ◽  
Author(s):  
Robin J. Van Meter ◽  
Christopher M. Swan ◽  
Joel W. Snodgrass

RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Naiah Caroline Rodrigues de Souza ◽  
◽  
Andrea Sousa Fontes ◽  
Lafayette Dantas da Luz ◽  
Sandra Maria Conceição Pinheiro ◽  
...  

ABSTRACT The flow regulation that results from the implantation of dams causes consequences to the river ecosystems due to the modification on the characteristics of the hydrologic regime. The investigation of these changes become relevant, mainly in semi-arid regions where there is a great amount of these hydraulic structures and lack of such analyzes. Considering the above, this paper aims to evaluate the Dundee Hydrological Regime Alteration Method (DHRAM) through the classification of the degree of impact of dams located on rivers Itapicuru, Paraguaçu and their tributaries, verifying the adequacy of its use to represent the semi-arid hydrologic regime. Thereby, the DHRAM was applied in three versions: considering the thresholds that define the scores to classify the degree of impact in its original set (accordingly to Black et al. (2005)); with the adjustment of those thresholds to local conditions; and, with the regrouping of variables and adjustment of thresholds. The results showed that the method in its original set is applicable to semi-arid rivers, however it tends to be very restrictive against the high natural hydrologic variability characteristic of these rivers, and it ends up pointing to a high degree of alteration for dams that are known for not causing a very siginifcant flow regulation. The DHRAM with the regrouping of variables and the adjustment of thresholds presented the classification that approached the most to the known characteristics of the studied dams, being useful for the evaluation of the impact of dams still in project, and also to guide the adoption of operating rules that minimize the most significant hydrologic alterations that are identified.


Sign in / Sign up

Export Citation Format

Share Document