scholarly journals Permutation statistics related to a class of noncommutative symmetric functions and generalizations of the Genocchi numbers

2009 ◽  
Vol 15 (1) ◽  
pp. 105-119 ◽  
Author(s):  
Florent Hivert ◽  
Jean-Christophe Novelli ◽  
Lenny Tevlin ◽  
Jean-Yves Thibon
2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jia Huang

International audience We define an action of the $0$-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their $(q,t)$-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identities, which specialize to a result of Garsia and Gessel on the generating function of the joint distribution of five permutation statistics. Nous définissons une action de l’algèbre de Hecke-$0$ de type A sur l’anneau Stanley-Reisner de l’algèbre de Boole. En étudiant cette action, on obtient une famille de fonctions symétriques non commutatives multivariées, qui se spécialisent pour les non commutatives fonctions de Hall-Littlewood symétriques et leur $(q,t)$-analogues introduits par Bergeron et Zabrocki. Nous obtenons également des identités de fonction quasisymmetrique multivariées, qui se spécialisent à la suite de Garsia et Gessel sur la fonction génératrice de la distribution conjointe de cinq statistiques de permutation.


2008 ◽  
Vol 51 (3) ◽  
pp. 424-438 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon

AbstractThe consideration of tensor products of 0-Hecke algebramodules leads to natural analogs of the BesselJ-functions in the algebra of noncommutative symmetric functions. This provides a simple explanation of various combinatorial properties of Bessel functions.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Olivier Mallet

International audience In this paper we present a work in progress on a conjectural new combinatorial model for the Genocchi numbers. This new model called irreducible k-shapes has a strong algebraic background in the theory of symmetric functions and leads to seemingly new features on the theory of Genocchi numbers. In particular, the natural q-analogue coming from the degree of symmetric functions seems to be unknown so far. Dans cet article, nous présentons un travail en cours sur un nouveau modèle combinatoire conjectural pour les nombres de Genocchi. Ce nouveau modèle est celui des k-formes irréductibles, qui repose sur de solides bases algébriques en lien avec la théorie des fonctions symétriques et qui conduit à des aspects apparemment nouveaux de la théorie des nombres de Genocchi. En particulier, le q-analogue naturel venant du degré des fonctions symétriques semble inconnu jusqu'ici.


10.37236/468 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Matt Szczesny

Let ${\cal CRF}_S$ denote the category of $S$-colored rooted forests, and H$_{{\cal CRF}_S}$ denote its Ringel-Hall algebra as introduced by Kremnizer and Szczesny. We construct a homomorphism from a $K^+_0({\cal CRF}_S)$–graded version of the Hopf algebra of noncommutative symmetric functions to H$_{{\cal CRF}_S}$. Dualizing, we obtain a homomorphism from the Connes-Kreimer Hopf algebra to a $K^+_0({\cal CRF}_S)$–graded version of the algebra of quasisymmetric functions. This homomorphism is a refinement of one considered by W. Zhao.


10.37236/5949 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Rebecca Patrias

Motivated by work of Buch on set-valued tableaux in relation to the K-theory of the Grassmannian, Lam and Pylyavskyy studied six combinatorial Hopf algebras that can be thought of as K-theoretic analogues of the Hopf algebras of symmetric functions, quasisymmetric functions, noncommutative symmetric functions, and of the Malvenuto-Reutenauer Hopf algebra of permutations. They described the bialgebra structure in all cases that were not yet known but left open the question of finding explicit formulas for the antipode maps. We give combinatorial formulas for the antipode map for the K-theoretic analogues of the symmetric functions, quasisymmetric functions, and noncommutative symmetric functions.


2012 ◽  
Vol 48 (3) ◽  
pp. 528-534 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon

2007 ◽  
Vol 06 (05) ◽  
pp. 815-837 ◽  
Author(s):  
JONATHAN DELENCLOS ◽  
ANDRÉ LEROY

Let K, S, D be a division ring, an endomorphism and a S-derivation of K, respectively. In this setting we introduce generalized noncommutative symmetric functions and obtain Viète formula and decompositions of differential operators. W-polynomials show up naturally, their connections with P-independency, Vandermonde and Wronskian matrices are briefly studied. The different linear factorizations of W-polynomials are analyzed. Connections between the existence of LLCM of monic linear polynomials with coefficients in a ring and the left duo property are established at the end of the paper.


Sign in / Sign up

Export Citation Format

Share Document