scholarly journals Reflexive polytopes arising from bipartite graphs with $$\gamma $$-positivity associated to interior polynomials

2020 ◽  
Vol 26 (4) ◽  
Author(s):  
Hidefumi Ohsugi ◽  
Akiyoshi Tsuchiya

Abstract In this paper, we introduce polytopes $${\mathscr {B}}_G$$ B G arising from root systems $$B_n$$ B n and finite graphs G, and study their combinatorial and algebraic properties. In particular, it is shown that $${\mathscr {B}}_G$$ B G is reflexive if and only if G is bipartite. Moreover, in the case, $${\mathscr {B}}_G$$ B G has a regular unimodular triangulation. This implies that the $$h^*$$ h ∗ -polynomial of $${\mathscr {B}}_G$$ B G is palindromic and unimodal when G is bipartite. Furthermore, we discuss stronger properties, namely the $$\gamma $$ γ -positivity and the real-rootedness of the $$h^*$$ h ∗ -polynomials. In fact, if G is bipartite, then the $$h^*$$ h ∗ -polynomial of $${\mathscr {B}}_G$$ B G is $$\gamma $$ γ -positive and its $$\gamma $$ γ -polynomial is given by an interior polynomial (a version of the Tutte polynomial for a hypergraph). The $$h^*$$ h ∗ -polynomial is real-rooted if and only if the corresponding interior polynomial is real-rooted. From a counterexample to Neggers–Stanley conjecture, we construct a bipartite graph G whose $$h^*$$ h ∗ -polynomial is not real-rooted but $$\gamma $$ γ -positive, and coincides with the h-polynomial of a flag triangulation of a sphere.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yinglei Song

Abstract In this paper, we study the parameterized complexity of the induced matching problem in hamiltonian bipartite graphs and the inapproximability of the maximum induced matching problem in hamiltonian bipartite graphs. We show that, given a hamiltonian bipartite graph, the induced matching problem is W[1]-hard and cannot be solved in time n o ⁢ ( k ) {n^{o(\sqrt{k})}} , where n is the number of vertices in the graph, unless the 3SAT problem can be solved in subexponential time. In addition, we show that unless NP = P {\operatorname{NP}=\operatorname{P}} , a maximum induced matching in a hamiltonian bipartite graph cannot be approximated within a ratio of n 1 / 4 - ϵ {n^{1/4-\epsilon}} , where n is the number of vertices in the graph.


2013 ◽  
Vol 22 (5) ◽  
pp. 783-799 ◽  
Author(s):  
GUILLEM PERARNAU ◽  
ORIOL SERRA

A perfect matchingMin an edge-coloured complete bipartite graphKn,nis rainbow if no pair of edges inMhave the same colour. We obtain asymptotic enumeration results for the number of rainbow perfect matchings in terms of the maximum number of occurrences of each colour. We also consider two natural models of random edge-colourings ofKn,nand show that if the number of colours is at leastn, then there is with high probability a rainbow perfect matching. This in particular shows that almost every square matrix of ordernin which every entry appearsntimes has a Latin transversal.


2014 ◽  
Vol 17 (1) ◽  
Author(s):  
Wenwen Fan ◽  
Cai Heng Li ◽  
Jiangmin Pan

Abstract.We characterize groups which act locally-primitively on a complete bipartite graph. The result particularly determines certain interesting factorizations of groups.


1998 ◽  
Vol 21 (1) ◽  
pp. 103-106
Author(s):  
Pak-Ken Wong

LetGbe a connected bipartite graph with bipartition(X,Y)such that|X|≥|Y|(≥2),n=|X|andm=|Y|. Suppose, for all verticesx∈Xandy∈Y,dist(x,y)=3impliesd(x)+d(y)≥n+1. ThenGcontains a cycle of length2m. In particular, ifm=n, thenGis hamiltomian.


2018 ◽  
Vol 29 (05) ◽  
pp. 705-720 ◽  
Author(s):  
V. Berthé ◽  
F. Dolce ◽  
F. Durand ◽  
J. Leroy ◽  
D. Perrin

Dendric words are infinite words that are defined in terms of extension graphs. These are bipartite graphs that describe the left and right extensions of factors. Dendric words are such that all their extension graphs are trees. They are also called tree words. This class of words includes classical families of words such as Sturmian words, codings of interval exchanges, or else, Arnoux–Rauzy words. We investigate here the properties of substitutive dendric words and prove some rigidity properties, that is, algebraic properties on the set of substitutions that fix a dendric word. We also prove that aperiodic minimal dendric subshifts (generated by dendric words) cannot have rational topological eigenvalues, and thus, cannot be generated by constant length substitutions.


10.37236/923 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Stefanie Gerke ◽  
Angelika Steger

We are interested in $(\varepsilon)$-regular bipartite graphs which are the central objects in the regularity lemma of Szemerédi for sparse graphs. A bipartite graph $G=(A\uplus B,E)$ with density $p={|E|}/({|A||B|})$ is $(\varepsilon)$-regular if for all sets $A'\subseteq A$ and $B'\subseteq B$ of size $|A'|\geq \varepsilon|A|$ and $|B'|\geq \varepsilon |B|$, it holds that $\left| {e_G(A',B')}/{(|A'||B'|)}- p\right| \leq \varepsilon p$. In this paper we prove a characterization for $(\varepsilon)$-regularity. That is, we give a set of properties that hold for each $(\varepsilon)$-regular graph, and conversely if the properties of this set hold for a bipartite graph, then the graph is $f(\varepsilon)$-regular for some appropriate function $f$ with $f(\varepsilon)\rightarrow 0$ as $\varepsilon\rightarrow 0$. The properties of this set concern degrees of vertices and common degrees of vertices with sets of size $\Theta(1/p)$ where $p$ is the density of the graph in question.


10.37236/705 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Carl Johan Casselgren

A proper edge coloring of a graph $G$ with colors $1,2,3,\dots$ is called an interval coloring if the colors on the edges incident with any vertex are consecutive. A bipartite graph is $(3,4)$-biregular if all vertices in one part have degree $3$ and all vertices in the other part have degree $4$. Recently it was proved [J. Graph Theory 61 (2009), 88-97] that if such a graph $G$ has a spanning subgraph whose components are paths with endpoints at 3-valent vertices and lengths in $\{2, 4, 6, 8\}$, then $G$ has an interval coloring. It was also conjectured that every simple $(3,4)$-biregular bipartite graph has such a subgraph. We provide some evidence for this conjecture by proving that a simple $(3,4)$-biregular bipartite graph has a spanning subgraph whose components are nontrivial paths with endpoints at $3$-valent vertices and lengths not exceeding $22$.


10.37236/610 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Leonard J. Schulman

In a bipartite graph there are two widely encountered monotone mappings from subsets of one side of the graph to subsets of the other side: one corresponds to the quantifier "there exists a neighbor in the subset" and the other to the quantifier "all neighbors are in the subset." These mappings generate a partially ordered semigroup which we characterize in terms of "run-unimodal" words.


2014 ◽  
Vol Vol. 16 no. 3 ◽  
Author(s):  
Frederic Havet ◽  
Nagarajan Paramaguru ◽  
Rathinaswamy Sampathkumar

International audience For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.


Sign in / Sign up

Export Citation Format

Share Document