Exact self-similar solutions of the magnetohydrodynamic boundary layer system for power-law fluids

2007 ◽  
Vol 58 (5) ◽  
pp. 805-817 ◽  
Author(s):  
Zhongxin Zhang ◽  
Junyu Wang
Author(s):  
G.C. Layek ◽  
Bidyut Mandal ◽  
Krishnendu Bhattacharyya ◽  
Astick Banerjee

AbstractA symmetry analysis of steady two-dimensional boundary layer stagnation-point flow and heat transfer of viscous incompressible non-Newtonian power-law fluids over a nonlinearly shrinking/stretching sheet with thermal radiation effect is presented. Lie group of continuous symmetry transformations is employed to the boundary layer flow and heat transfer equations, that gives scaling laws and self-similar equations for a special type of shrinking/stretching velocity ($c{x^{1/3}}$) and free-stream straining velocity ($a{x^{1/3}}$) along the axial direction to the sheet. The self-similar equations are solved numerically using very efficient shooting method. For the above nonlinear velocities, the unique self-similar solution is obtained for straining velocity being always less than the shrinking/stretching velocity for Newtonian and non-Newtonian power-law fluids. The thickness of velocity boundary layer becomes thinner with power-law index for shrinking as well as stretching sheet cases. Also, the thermal boundary layer thickness decreases with increasing values the Prandtl number and the radiation parameter.


AIChE Journal ◽  
1964 ◽  
Vol 10 (5) ◽  
pp. 775-781 ◽  
Author(s):  
J. N. Kapur ◽  
R. C. Srivastava

1999 ◽  
Vol 387 ◽  
pp. 227-254 ◽  
Author(s):  
VALOD NOSHADI ◽  
WILHELM SCHNEIDER

Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural convection on a horizontal finite plate acting as a heat dipole, are considered at large distances from the plate. It is shown that physically acceptable self-similar solutions of the boundary-layer equations, which include buoyancy effects, exist in certain Prandtl-number regimes, i.e. 0.5<Pr[les ]1.470588 for plane, and Pr>1 for axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions are independent of the Prandtl number and can be determined from a momentum balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl number and are to be determined as part of the solution of the eigenvalue problem. For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and 1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant jet, for which self-similar solutions of the boundary-layer equations are also provided. Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of the Prandtl number.Comparisons with finite-element solutions of the full Navier–Stokes equations show that the self-similar boundary-layer solutions are asymptotically approached as the plate Grashof number tends to infinity, whereas the self-similar solution to the full Navier–Stokes equations is applicable, for a given value of the Prandtl number, only to one particular, finite value of the Grashof number.In the Appendices second-order boundary-layer solutions are given, and uniformly valid composite expansions are constructed; asymptotic expansions for large values of the lateral coordinate are performed to study the decay of the self-similar boundary-layer flows; and the stability of the jets is investigated using transient numerical solutions of the Navier–Stokes equations.


Sign in / Sign up

Export Citation Format

Share Document