A Single-Channel Amplifier for Simultaneously Monitoring Impedance Respiration Signal and ECG Signal

Author(s):  
Shuaiju Yin ◽  
Gang Li ◽  
Yongshun Luo ◽  
Shuqiang Yang ◽  
Han Tain ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7731 ◽  
Author(s):  
Tao Wang ◽  
Changhua Lu ◽  
Guohao Shen ◽  
Feng Hong

Sleep apnea (SA) is the most common respiratory sleep disorder, leading to some serious neurological and cardiovascular diseases if left untreated. The diagnosis of SA is traditionally made using Polysomnography (PSG). However, this method requires many electrodes and wires, as well as an expert to monitor the test. Several researchers have proposed instead using a single channel signal for SA diagnosis. Among these options, the ECG signal is one of the most physiologically relevant signals of SA occurrence, and one that can be easily recorded using a wearable device. However, existing ECG signal-based methods mainly use features (i.e. frequency domain, time domain, and other nonlinear features) acquired from ECG and its derived signals in order to construct the model. This requires researchers to have rich experience in ECG, which is not common. A convolutional neural network (CNN) is a kind of deep neural network that can automatically learn effective feature representation from training data and has been successfully applied in many fields. Meanwhile, most studies have not considered the impact of adjacent segments on SA detection. Therefore, in this study, we propose a modified LeNet-5 convolutional neural network with adjacent segments for SA detection. Our experimental results show that our proposed method is useful for SA detection, and achieves better or comparable results when compared with traditional machine learning methods.


2020 ◽  
Vol 10 (16) ◽  
pp. 5634
Author(s):  
Miao Zhang ◽  
Guo Wei

In this paper, an instantaneous correlation coefficient and simplified coherent averaging method for single-channel foetal ECG (FECG) extraction is proposed. The instantaneous correlation coefficient is used to determine the position of the R peak of the measured ECG signal, and the simplified coherent averaging method is used to extract the main information of the ECG signal. The loss of the nonlinear and nonstationary characteristics by coherent averaging is recovered by threshold processing of the residual signal. The FECG signal extraction is performed in three steps. In the first step, the main information of the maternal electrocardiogram (MECG) is extracted from the abdomen electrocardiogram (AECG) signal by means of the instantaneous correlation coefficient and simplified coherent averaging method, and then the noisy FECG is obtained by subtracting the MECG obtained by simplified coherent averaging from the AECG. The second step is to extract the main information of the FECG by applying the instantaneous correlation coefficient and simplified coherent averaging method to the noisy FECG. The remaining signal is obtained by subtracting the simplified coherent averaging FECG from the noisy FECG. Thirdly, the threshold method is utilised to remove MECG residual noise and random gross value noise from the remaining signal to extract the nonlinear and nonstationary information, and the final FECG extraction is obtained by adding the nonlinear and nonstationary information to the simplified coherent averaging FECG. The validity of the proposed method is verified by experiments using synthetic data and real database data. FECG extracted by the method has the advantages of clear QRS complex wave, reasonable enhancement of P wave and T wave morphology, and no loss of nonlinear and nonstationary characteristics.


2015 ◽  
Vol 27 (01) ◽  
pp. 1550009 ◽  
Author(s):  
Osman Ozkaraca ◽  
Inan Guler

In this paper, a prototype of wearable and wireless electrocardiography (ECG) monitoring system is developed and implemented on DSP and PDA. We present a real-time extended Kalman filtering framework for extracting motion and electromyography (EMG) artifacts from a single-channel ECG in wearable systems as different from other offline studies. Realized prototype is a good example for the usage of the Kalman filter in biomedical real-time system. The average SNR advancement of 9.1430 dB was achieved for denoising, which is average 1 dB more than the other methods such as MABWT, EKF2 by using MIT-BIH database. Additionally, the usability and performances of conductive textile electrodes were evaluated with disposable Ag – AgCl electrodes by using daily activities. A novel textile electrode gave approximately 25.23% better results compared to Ag – AgCl electrodes. Also, UDP, TCP and Web Socket communication protocols have been tested. UDP has been the fastest method for the ECG signal transferring from the patient to the doctor. At the same time, a method is proposed for direct access to the patient by the doctor. The results illustrate that this type of system will submit highly ergonomic solutions among biomedical device technologies. In addition, the usage of such kinds of systems is foreseen for requiring long-term follow-up and disorders.


Author(s):  
P. Trebbia ◽  
P. Ballongue ◽  
C. Colliex

An effective use of electron energy loss spectroscopy for chemical characterization of selected areas in the electron microscope can only be achieved with the development of quantitative measurements capabilities.The experimental assembly, which is sketched in Fig.l, has therefore been carried out. It comprises four main elements.The analytical transmission electron microscope is a conventional microscope fitted with a Castaing and Henry dispersive unit (magnetic prism and electrostatic mirror). Recent modifications include the improvement of the vacuum in the specimen chamber (below 10-6 torr) and the adaptation of a new electrostatic mirror.The detection system, similar to the one described by Hermann et al (1), is located in a separate chamber below the fluorescent screen which visualizes the energy loss spectrum. Variable apertures select the electrons, which have lost an energy AE within an energy window smaller than 1 eV, in front of a surface barrier solid state detector RTC BPY 52 100 S.Q. The saw tooth signal delivered by a charge sensitive preamplifier (decay time of 5.10-5 S) is amplified, shaped into a gaussian profile through an active filter and counted by a single channel analyser.


1968 ◽  
Vol 11 (1) ◽  
pp. 189-193 ◽  
Author(s):  
Lois Joan Sanders

A tongue pressure unit for measurement of lingual strength and patterns of tongue pressure is described. It consists of a force displacement transducer, a single channel, direct writing recording system, and a specially designed tongue pressure disk, head stabilizer, and pressure unit holder. Calibration with known weights indicated an essentially linear and consistent response. An evaluation of subject reliability in which 17 young adults were tested on two occasions revealed no significant difference in maximum pressure exerted during the two test trials. Suggestions for clinical and research use of the instrumentation are noted.


Sign in / Sign up

Export Citation Format

Share Document