scholarly journals HMGB1: an important regulator of myeloid differentiation and acute myeloid leukemia as well as a promising therapeutic target

2020 ◽  
Vol 99 (1) ◽  
pp. 107-118
Author(s):  
Lulu Liu ◽  
Jingjing Zhang ◽  
Xianning Zhang ◽  
Panpan Cheng ◽  
Lei Liu ◽  
...  

Abstract High mobility group box 1 (HMGB1) is a non-histone nuclear protein which has been intensively studied in various physiological and pathological processes including leukemia. Here in this study, we further demonstrated that HMGB1 presents higher expression in the bone marrow mononuclear cells of acute myeloid leukemia (AML) patients compared with the normal controls and contributes to the AML pathogenesis and progression by inhibiting apoptosis, facilitating proliferation, and inducing myeloid differentiation blockade of AML cells. Mechanistic investigation revealed that transforming growth factor beta-induced (TGFBI) acts as a potential downstream target of HMGB1 and lentivirus-mediated knockdown of TGFBI expression impaired phorbol-12-myristate-13-acetate (PMA) and all-trans retinoic acid (ATRA)–induced myeloid differentiation of AML cell lines. On the other hand, chidamide, an orally histone deacetylase inhibitor, decreases HMGB1 expression significantly in AML cells with concomitant upregulation of TGFBI expression, and confers therapeutic effect on AML by inducing cell differentiation, apoptosis and inhibiting cell proliferation. In conclusion, our findings provide additional insights that HMGB1 is a promising therapeutic target of AML, and also present experimental evidence for the clinical application of chidamide as a novel agent in AML therapy by downregulating HMGB1 expression. Key messages HMGB1 induces cell proliferation and myeloid differentiation blockade and inhibits apoptosis of AML cells. TGFBI acts as a potential target of HMGB1. Chidamide, a selective HDAC inhibitor, confers promising therapeutic effect for AML via downregulating HMGB1 expression.

Author(s):  
Marco Spreafico ◽  
Alicja M. Gruszka ◽  
Debora Valli ◽  
Mara Mazzola ◽  
Gianluca Deflorian ◽  
...  

Author(s):  
Ling Zhang ◽  
Xiaozhen Wang ◽  
Jieying Wu ◽  
Ruozhi Xiao ◽  
Jiajun Liu

Abstract Here, we aimed to investigate the biological roles and the regulatory mechanisms of miR-335-3p in acute myeloid leukemia (AML). We first found miR-335-3p was significantly down-regulated in blood samples from leukemia patients and cell lines using reverse transcription quantitative PCR. Through CCK-8 assay and flow cytometry, we observed that miR-335-3p overexpression significantly inhibited cell proliferation, induced cell cycle G0/G1 arrest and apoptosis in AML cell lines (THP-1 and U937). Moreover, miR-335-3p directly targets EIF3E and negatively regulated its expression. More importantly, EIF3E overexpression reversed the effects of miR-335-3p on cell proliferation, G1/S transition and apoptosis. Furthermore, miR-335-3p overexpression obviously downregulated the expression of CDK4, Cyclin D1 and Bcl-2, while upregulated the expression of p21 and Bad, which were significantly rescued by the co-transfection of pcDNA3.1-EIF3E. Collectively, our study proposes that miR-335-3p/EIF3E axis could be a promising therapeutic target to mitigate the progression of AML.


Blood ◽  
2015 ◽  
Vol 125 (15) ◽  
pp. 2386-2396 ◽  
Author(s):  
Francis Mussai ◽  
Sharon Egan ◽  
Joseph Higginbotham-Jones ◽  
Tracey Perry ◽  
Andrew Beggs ◽  
...  

Key Points Arginase depletion with BCT-100 pegylated recombinant human arginase is cytotoxic to AML blasts.


2021 ◽  
Vol 21 ◽  
pp. S306
Author(s):  
Irina Panovska-Stavridis ◽  
Nevenka Ridova ◽  
Simona Stojanovska ◽  
Sanja Trajkova ◽  
Aleksandra Pivkova-Veljanovska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document