Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability

2003 ◽  
Vol 107 (7) ◽  
pp. 1195-1200 ◽  
Author(s):  
M. J. Kermani ◽  
V. Sarasan ◽  
A. V. Roberts ◽  
K. Yokoya ◽  
J. Wentworth ◽  
...  
2021 ◽  
pp. 1-10
Author(s):  
Sourbh Kumar ◽  
Uttam Chandel ◽  
Satish Kumar Guleria

Abstract An investigation to optimize the protocol for application of colchicine for enhancing the doubled haploid production in maize was done. 106 maize genotypes were used as maternal parents, whereas, pollen source involved tropically adopted haploid inducer (TAIL P1 and TAIL hybrid). After the elimination of chromosomes of inducer lines, haploid seeds were obtained from the crosses. Haploid seedlings were treated with three different doses, such as 0.04, 0.06 and 0.08 per cent of colchicines for different durations (8, 12 and 15 hours). The response of various colchicine concentrations applied for different time durations revealed significant differences at P ≤ 0.05 for various parameters viz., per cent plants survivability, stalk colour, the fertility of tassel, silk present/absent, pollen viability, seed set and per cent doubled haploid formation. In maize, colchicine doses of 0.04 per cent for 12 hours and 0.06 per cent for 8 hours, respectively were established as optimum for enhanced doubled haploid production. But among these two, 0.04 per cent for 12 hours was observed to be best dose for doubled haploid production in maize.


2020 ◽  
Vol 80 (01) ◽  
Author(s):  
Arshpreet Kaur ◽  
Rahul Kapoor ◽  
Yogesh Vikal ◽  
Anu Kalia

We report the production of hexaploid plants of interspecific hybrids of Pennisetum, with the ultimate aim to improve the biomass yield, drought tolerance and multicut behaviour of this genus. Chromosome doubling was achieved with the application of colchicine at three different concentrations (0.05, 0.1 and 0.2%) for two time durations (12 and 24 hours). The root slips and stem cuttings of interspecific hybrids were used for treatment and the root slips were found to be more efficient. The preliminary screening to select the putative hexaploid plant was done based on stomatal frequency and morphology. Plants containing significantly lower stomatal frequency and larger stomata size were selected for further analysis by chromosome counting. This experiment confirmed that 0.1% concentration of colchicine treatment to root slips for 24 hours was more effective to induce the amphiploids in Pennisetum.


Genome ◽  
2015 ◽  
Vol 58 (11) ◽  
pp. 453-461 ◽  
Author(s):  
Shujun Zhou ◽  
Lei Zhong ◽  
Lu Zhang ◽  
Zhenghua Xu ◽  
Xuxin Liu ◽  
...  

Asiatic lily cultivars, bred by hybridization and (or) chromosome doubling of species of section Sinomartagon of Lilium, are diploid, triploid, or tetraploid, but the homology of the genomes among species of section Sinomartagon and Asiatic lilies remains unclear. In the present research, two tetraploid Asiatic cultivars were analyzed, using 45S rDNA as probe, for their FISH karyotypes and their chromosomal association, anaphase I, telophase II, and pollen viability were surveyed to assess the multivalent segregation. Chromosomal assortment of six progenies of the two tetraploid cultivars were also investigated. The results showed that the tetraploid cultivars had similar FISH karyotypes, they predominantly formed multivalents, and these were equally separated because their anaphase I, telophase II, and pollen viability were similar to those of diploid species. Apart from minor variations, FISH karyotypes of progenies were similar to each other and to their parents. Based on these results and considering the high crossability among species of section Sinomartagon and (or) Asiatic lilies, we concluded that species of section Sinomartagon and their resulting cultivars share a common genome; thus, polyploidy Asiatic lilies are autopolyploid.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 497E-498
Author(s):  
Ryan N. Contreras ◽  
Thomas G. Ranney

Wide hybridization can potentially lead to the combination of diverse traits, but these hybrids are often sterile as is the case with the inter-subgeneric hybrid Rhododendron `Fragrant Affinity'. Induction of polyploidy can restore chromosome homology and fertility in wide hybrids. In this study we successfully developed an allopolyploid form of R. `Fragrant Affinity' using oryzalin as a mitotic inhibitor and chromosome doubling agent. Approximate genome size (2C), determined using flow cytometry, was 1.6 pg for the diploid and 3.2 pg for the allotetraploid. Pollen viability, determined by staining and germination tests, was 4% and 0%, respectively for the diploid and 68% and 45%, respectively for the allotetraploid. No seeds were produced when the diploid R. `Fragrant Affinity' was crossed with pollen from viable diploid and tetraploid parents. The allotetraploid produced viable seeds and seedlings when crossed with viable pollen from either diploid or tetraploid parents, including self pollination, demonstrating restored fertility. Additional crosses were successfully completed using the allotetraploid as part of an ongoing breeding program to develop new fragrant, cold hardy, evergreen rhododendron.


2011 ◽  
Vol 38 (No. 3) ◽  
pp. 96-103 ◽  
Author(s):  
K. Van Laere ◽  
J. Van Huylenbroeck ◽  
E. Van Bockstaele

To introduce yellow colour in the commercial Buddleja davidii (2n = 4x = 76) assortment, an interspecific breeding programme with B. globosa (2n = 2x = 38) was started. The first step was to perform chromosome doubling in B. globosa. Two of the obtained tetraploid B. globosa plants were subsequently used as male parent in interspecific crosses with the white flowering B. davidii cv. Nanhoensis Alba. In total 182 interspecific crosses were made and 18 F1 hybrids were obtained. Genome size measurements, chromosome counts and genomic in situ hybridisation (GISH) analysis proved the hybrid nature of most of the F1 hybrids. Plant morphology also expressed hybrid characteristics. F1 seedlings inherited the yellowish flower colour from B. globosa. As for many other woody ornamentals, the creation of hybrids through interspecific hybridisation along with polyploidisation offers new opportunities for breeding in Buddleja.


2019 ◽  
Vol 138 (3) ◽  
pp. 571-581 ◽  
Author(s):  
Qingqing Zeng ◽  
Zhao Liu ◽  
Kang Du ◽  
Xiangyang Kang

2015 ◽  
Vol 57 (2) ◽  
pp. 98-105 ◽  
Author(s):  
Alicja Chuda ◽  
Karolina Kłosowska ◽  
Adela Adamus

Abstract In the previous study we obtained a population of interspecific F1 A. cepa × A. roylei hybrids. In this study, in comparison to the parental species: A. cepa and A. roylei, the F1 hybrids were evaluated in terms of plant morphology, pollen viability, microsporogenesis and female gametophyte. Most of the morphological characters of the F1 hybrids were intermediate as compared to those of both parental accessions. In pollen mother cells (PMCs) of the F1 hybrids abnormalities were observed in meiosis as well as at the tetrad stage. Pollen viability of F1 A. cepa × A. roylei hybrids was reduced to 30.1%. In the F1 hybrids, 45.8% of the analyzed ovules showed developmental disturbances, whereas in 26.7% of the ovules necrotic processes were observed.


2004 ◽  
Vol 47 (5) ◽  
pp. 703-712 ◽  
Author(s):  
Milena Barcelos Cardoso ◽  
Eliane Kaltchuk-Santos ◽  
Elsa Cristina de Mundstock ◽  
Maria Helena Bodanese-Zanettini

Anthers obtained from flowers buds of soybean cultivar IAS-5 were cultured in two basal culture media (B5 and B5 long). Cytological examinations of the in vitro anthers were performed during the first 20 days of culture to assay the viability (by propionic-carmine and fluorescein diacetate tests) and the stage of development of pollen grains. The frequencies of viable pollen grains varied significantly between bud sizes on the propionic-carmine analysis. The basal culture media and bud size had no clear effect on the frequencies of binucleate symmetrical and multinucleate pollen grains. Chromosome counts of metaphasic microspores throughout the culture period showed microspores with higher ploidy level in addition to normal chromosome number (n=20).


Euphytica ◽  
2007 ◽  
Vol 157 (1-2) ◽  
pp. 145-154 ◽  
Author(s):  
Guofeng Liu ◽  
Zhineng Li ◽  
Manzhu Bao

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1041E-1042
Author(s):  
Bruce L. Dunn ◽  
Jon T. Lindstrom

Ploidy level and fertility status are often the two biggest barriers a breeder must overcome when trying to incorporate novel characteristics among related taxa. This study was aimed at developing an efficient chromosome doubling method for Buddleja L., commonly known as butterfly bush, with the goal of equalizing the ploidy level and restoring the fertility of a diploid (2n=38) F1 interspecific hybrid that has a unique orange color but happens to be sterile. This method would ease the crossing of the hybrid to the tetraploid (2n=76) B. davidii Franch. cultivars commonly found in the industry. An antimitotic treatment of oryzalin was tested on 02-25-142 (B. madagascarensis Lam. × B. crispa Benth.) in vitro using nodal sections. A factorial of varying concentrations [3, 5, and 7 μM (micromolar)] by different exposure times (1, 2, and 3 day) plus controls was set up. Oryzalin appeared to be an efficient agent for chromosome doubling in Buddleja. Significant differences in the number of polyploids were not seen between chemical concentrations and exposure times. However, higher chemical concentrations and exposure times did have a significant effect on the number of nodes that survived tissue culture. Increased leaf size and color, stem thickness, shortened internode length, and upright growth habit were all good early phenotypic indicators of polyploidy induction as later confirmed by flow cytometry. Significant increases in pollen viability accompanied chromosome doubling as crosses between 02-25-142 × B. davidii cultivars produced viable seedlings.


Sign in / Sign up

Export Citation Format

Share Document