Study on the homology of the genomes of tetraploid Asiatic lilies (Lilium) using FISH

Genome ◽  
2015 ◽  
Vol 58 (11) ◽  
pp. 453-461 ◽  
Author(s):  
Shujun Zhou ◽  
Lei Zhong ◽  
Lu Zhang ◽  
Zhenghua Xu ◽  
Xuxin Liu ◽  
...  

Asiatic lily cultivars, bred by hybridization and (or) chromosome doubling of species of section Sinomartagon of Lilium, are diploid, triploid, or tetraploid, but the homology of the genomes among species of section Sinomartagon and Asiatic lilies remains unclear. In the present research, two tetraploid Asiatic cultivars were analyzed, using 45S rDNA as probe, for their FISH karyotypes and their chromosomal association, anaphase I, telophase II, and pollen viability were surveyed to assess the multivalent segregation. Chromosomal assortment of six progenies of the two tetraploid cultivars were also investigated. The results showed that the tetraploid cultivars had similar FISH karyotypes, they predominantly formed multivalents, and these were equally separated because their anaphase I, telophase II, and pollen viability were similar to those of diploid species. Apart from minor variations, FISH karyotypes of progenies were similar to each other and to their parents. Based on these results and considering the high crossability among species of section Sinomartagon and (or) Asiatic lilies, we concluded that species of section Sinomartagon and their resulting cultivars share a common genome; thus, polyploidy Asiatic lilies are autopolyploid.

2021 ◽  
pp. 1-10
Author(s):  
Sourbh Kumar ◽  
Uttam Chandel ◽  
Satish Kumar Guleria

Abstract An investigation to optimize the protocol for application of colchicine for enhancing the doubled haploid production in maize was done. 106 maize genotypes were used as maternal parents, whereas, pollen source involved tropically adopted haploid inducer (TAIL P1 and TAIL hybrid). After the elimination of chromosomes of inducer lines, haploid seeds were obtained from the crosses. Haploid seedlings were treated with three different doses, such as 0.04, 0.06 and 0.08 per cent of colchicines for different durations (8, 12 and 15 hours). The response of various colchicine concentrations applied for different time durations revealed significant differences at P ≤ 0.05 for various parameters viz., per cent plants survivability, stalk colour, the fertility of tassel, silk present/absent, pollen viability, seed set and per cent doubled haploid formation. In maize, colchicine doses of 0.04 per cent for 12 hours and 0.06 per cent for 8 hours, respectively were established as optimum for enhanced doubled haploid production. But among these two, 0.04 per cent for 12 hours was observed to be best dose for doubled haploid production in maize.


1983 ◽  
Vol 8 ◽  
pp. 101-126 ◽  
Author(s):  
G. Vida ◽  
A. Major ◽  
T. Reichstein

Nine species of "Cheilantoid ferns" are known to grow in Macaronesia and the Mediterranean basin. Two of them (lacking a pseudo-indusium and having the basic chromosome number X = 29), both aggregate species which we prefer to retain in Notholaena, are not included in this study. The other seven species (with distinct pseudo-indusium and the basic chromosome number X = 30), which we accept as members of the genus Cheilanthes Sw. sensu stricto, were subjected to detailed genome analysis of their natural and experimentally produced hybrids and shown to represent an aggregate of four very distinct ancestral diploids and three allotetraploids. The latter must have once been formed by chromosome doubling in the three diploid hybrids of C. maderensis Lowe with the other three diploid species. Theoretically three more allotetraploids would be possible but their formation has obviously been prevented by the geographical separation of the three respective diploids. The most widely distributed of the tetraploids, i.e. C. pteridioides (Reich.) C.Chr. has also been resynthesized from its ancestors (still sympatric) under experimental conditions. The intermediate morphology of the allotetraploids (as compared with their diploid ancestors) is obviously the reason why their status and existence has so long escaped recognition in Europe. These seven species form a natural group and, in our opinion, should not be divided into sections.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242620
Author(s):  
Xiaomin Yin ◽  
Rulin Zhan ◽  
Yingdui He ◽  
Shun Song ◽  
Lixia Wang ◽  
...  

Wild species of Gossypium ssp. are an important source of traits for improving commercial cotton cultivars. Previous reports show that Gossypium herbaceum L. and Gossypium nelsonii Fryx. have better disease resistance characteristics than commercial cotton varieties. However, chromosome ploidy and biological isolation make it difficult to hybridize diploid species with the tetraploid Gossypium hirsutum L. We developed a new allotetraploid cotton genotype (A1A1G3G3) using a process of distant hybridization within wild cotton species to create new germplasms. First of all, G. herbaceum and G. nelsonii were used for interspecific hybridization to obtain F1 generation. Afterwards, apical meristems of the F1 diploid cotton plants were treated with colchicine to induce chromosome doubling. The new interspecific F1 hybrid and S1 cotton plants originated from chromosome duplication, were tested via morphological and molecular markers and confirmed their tetraploidy through flowrometric and cytological identification. The S1 tetraploid cotton plants was crossed with a TM-1 line and fertile hybrid offspring were obtained. These S2 offsprings were tested for resistance to Verticillium wilt and demonstrated adequate tolerance to this fungi. The results shows that the new S1 cotton line could be used as parental material for hybridization with G. hirsutum to produce pathogen-resistant cotton hybrids. This new S1 allotetraploid genotype will contributes to the enrichment of Gossypium germplasm resources and is expected to be valuable in polyploidy evolutionary studies.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 497E-498
Author(s):  
Ryan N. Contreras ◽  
Thomas G. Ranney

Wide hybridization can potentially lead to the combination of diverse traits, but these hybrids are often sterile as is the case with the inter-subgeneric hybrid Rhododendron `Fragrant Affinity'. Induction of polyploidy can restore chromosome homology and fertility in wide hybrids. In this study we successfully developed an allopolyploid form of R. `Fragrant Affinity' using oryzalin as a mitotic inhibitor and chromosome doubling agent. Approximate genome size (2C), determined using flow cytometry, was 1.6 pg for the diploid and 3.2 pg for the allotetraploid. Pollen viability, determined by staining and germination tests, was 4% and 0%, respectively for the diploid and 68% and 45%, respectively for the allotetraploid. No seeds were produced when the diploid R. `Fragrant Affinity' was crossed with pollen from viable diploid and tetraploid parents. The allotetraploid produced viable seeds and seedlings when crossed with viable pollen from either diploid or tetraploid parents, including self pollination, demonstrating restored fertility. Additional crosses were successfully completed using the allotetraploid as part of an ongoing breeding program to develop new fragrant, cold hardy, evergreen rhododendron.


Genome ◽  
2010 ◽  
Vol 53 (6) ◽  
pp. 430-438 ◽  
Author(s):  
B. R. Baum ◽  
M. Feldman

Two classes of 5S DNA units, namely the short (containing units of 410 bp) and the long (containing units of 500 bp), are recognized in species of the wheat (the genera Aegilops and Triticum ) group. While every diploid species of this group contains 2 unit classes, the short and the long, every allopolyploid species contains a smaller number of unit classes than the sum of the unit classes of its parental species. The aim of this study was to determine whether the reduction in these unit classes is due to the process of allopolyploidization, that is, interspecific or intergeneric hybridization followed by chromosome doubling, and whether it occurs during or soon after the formation of the allopolyploids. To study this, the number and types of unit classes were determined in several newly formed allotetraploids, allohexaploids, and an allooctoploid of Aegilops and Triticum. It was found that elimination of unit classes of 5S DNA occurred soon (in the first 3 generations) after the formation of the allopolyploids. This elimination was reproducible, that is, the same unit classes were eliminated in natural and synthetic allopolyploids having the same genomic combinations. No further elimination occurred in the unit classes of the 5S DNA during the life of the allopolyploid. The genetic and evolutionary significance of this elimination as well as the difference in response to allopolyploidization of 5S DNA and rDNA are discussed.


2003 ◽  
Vol 107 (7) ◽  
pp. 1195-1200 ◽  
Author(s):  
M. J. Kermani ◽  
V. Sarasan ◽  
A. V. Roberts ◽  
K. Yokoya ◽  
J. Wentworth ◽  
...  

2004 ◽  
Vol 47 (5) ◽  
pp. 703-712 ◽  
Author(s):  
Milena Barcelos Cardoso ◽  
Eliane Kaltchuk-Santos ◽  
Elsa Cristina de Mundstock ◽  
Maria Helena Bodanese-Zanettini

Anthers obtained from flowers buds of soybean cultivar IAS-5 were cultured in two basal culture media (B5 and B5 long). Cytological examinations of the in vitro anthers were performed during the first 20 days of culture to assay the viability (by propionic-carmine and fluorescein diacetate tests) and the stage of development of pollen grains. The frequencies of viable pollen grains varied significantly between bud sizes on the propionic-carmine analysis. The basal culture media and bud size had no clear effect on the frequencies of binucleate symmetrical and multinucleate pollen grains. Chromosome counts of metaphasic microspores throughout the culture period showed microspores with higher ploidy level in addition to normal chromosome number (n=20).


Genome ◽  
1994 ◽  
Vol 37 (5) ◽  
pp. 866-870 ◽  
Author(s):  
J. B. Bamberg ◽  
R. E. Hanneman Jr. ◽  
J. P. Palta ◽  
J. F. Harbage

The cultivated potato Solanum tuberosum Dunal has many wild related species with desirable traits. Some of these wild tetraploids have disomic chromosome pairing, ready selfing with little inbreeding depression, but have strong crossing barriers with cultivars. They hybridize most easily with 2EBN forms (which include most diploid species). Chromosome doubling to the 8x level, use of 2n gametes, use of 2n gametes of 4x–2x triploid hybrids, and embryo rescue have been proposed to overcome the crossability barrier of these species with S. tuberosum. In this study, 2x S. commersonii (cmm) was used as a bridge species with S. acaule and series Longipedicellata species. Synthetic tetraploid 4x-cmm crossed readily to disomic 4x species, resulting in fertile F1 and F2 hybrids. Some of these had 2n gametes, which enabled direct crossing to tuberosum, resulting in 6x hybrids. The benefits of this scheme are (i) hybrids are relatively fertile, so many progeny may be produced for selection at each step, (ii) hybridization with cmm results in 2n gametes needed for crossing to tuberosum, and breaks up restricted recombination within disomic genomes, and (iii) simple techniques and tools are employed.Key words: Solanum, potato, germplasm, crossability.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1041E-1042
Author(s):  
Bruce L. Dunn ◽  
Jon T. Lindstrom

Ploidy level and fertility status are often the two biggest barriers a breeder must overcome when trying to incorporate novel characteristics among related taxa. This study was aimed at developing an efficient chromosome doubling method for Buddleja L., commonly known as butterfly bush, with the goal of equalizing the ploidy level and restoring the fertility of a diploid (2n=38) F1 interspecific hybrid that has a unique orange color but happens to be sterile. This method would ease the crossing of the hybrid to the tetraploid (2n=76) B. davidii Franch. cultivars commonly found in the industry. An antimitotic treatment of oryzalin was tested on 02-25-142 (B. madagascarensis Lam. × B. crispa Benth.) in vitro using nodal sections. A factorial of varying concentrations [3, 5, and 7 μM (micromolar)] by different exposure times (1, 2, and 3 day) plus controls was set up. Oryzalin appeared to be an efficient agent for chromosome doubling in Buddleja. Significant differences in the number of polyploids were not seen between chemical concentrations and exposure times. However, higher chemical concentrations and exposure times did have a significant effect on the number of nodes that survived tissue culture. Increased leaf size and color, stem thickness, shortened internode length, and upright growth habit were all good early phenotypic indicators of polyploidy induction as later confirmed by flow cytometry. Significant increases in pollen viability accompanied chromosome doubling as crosses between 02-25-142 × B. davidii cultivars produced viable seedlings.


2004 ◽  
Vol 55 (10) ◽  
pp. 1085 ◽  
Author(s):  
J. A. Fortescue ◽  
D. W. Turner

Pollen viability was examined by recording the number of viable as well as non-viable microspores in anthers just before anthesis, as it could be an efficient and rapid indicator of female fertility. It was thought that competency in meiotic restitution in microspores could indicate similar competency in megaspores. Pollen fertility was compared among seeded diploids and edible triploids of Musa and correlated with ovule fertility. Viability was examined using the Alexander’s pollen stain procedure. The seeded diploid species M. acuminata, M. balbisiana, and M. ornata had 3 times more viable pollen than the edible tetraploids (AAAB). M. balbisiana and M. ornata had significantly more viable pollen than M. acuminata. The tetraploids contained 3 times more viable pollen than the edible triploids AAA and ABB and 4 times more than the AAB cultivars. The genome A or B did not affect pollen viability within the triploid cultivars examined. The AAA triploid Gros Michel had the highest percentage of viable pollen at 13% and Green/Red the lowest at 3%. Pollen viability was influenced by meiotic disturbances and an association was made between viability of pollen and viability of embryo sacs. Pollen viability from anthers of Australian grown species and cultivars of Musa a. ssp. (undescribed subspecies) was compared with published reports of pollen viability from Indian grown species and cultivars. The pollen viability between the Indian cultivated and wild diploids of Musa a. ssp. was similar at 50–66%, but less than the pollen viability of Australian diploid Musa a. ssp of 84%. The Indian-grown triploid cultivars had 21–29% viable pollen and the tetraploids had 28% viable pollen, whereas the Australian grown triploids had 6–10% viable pollen and the tetraploids 29% viable pollen. There was a difference in pollen viability between genome groups and within genome groups. Different species and cultivars of Musa possess different levels of competency in the production of microspores, which correlated positively with levels of megaspore fertility in the same species and cultivars.


Sign in / Sign up

Export Citation Format

Share Document