Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits

2005 ◽  
Vol 112 (3) ◽  
pp. 570-580 ◽  
Author(s):  
Feng Tian ◽  
De Jun Li ◽  
Qiang Fu ◽  
Zuo Feng Zhu ◽  
Yong Cai Fu ◽  
...  
Genome ◽  
1996 ◽  
Vol 39 (6) ◽  
pp. 1109-1116 ◽  
Author(s):  
K. D. Liu ◽  
Qifa Zhang ◽  
G. P. Yang ◽  
M. A. Saghai Maroof ◽  
S. H. Zhu ◽  
...  

A collection of 481 rice accessions was surveyed for ribosomal DNA (rDNA) intergenic spacer length polymorphism to assess the extent of genetic diversity in Chinese and Asian rice germplasm. The materials included 83 accessions of common wild rice, Oryza rufipogon, 75 of which were from China; 348 entries of cultivated rice (Oryza sativa), representing almost all the rice growing areas in China; and 50 cultivars from South and East Asia. A total of 42 spacer length variants (SLVs) were detected. The size differences between adjacent SLVs in the series were very heterogeneous, ranging from ca. 21 to 311 bp. The 42 SLVs formed 80 different rDNA phenotypic combinations. Wild rice displayed a much greater number of rDNA SLVs than cultivated rice, while cultivated rice showed a larger number of rDNA phenotypes. Indica and japonica groups of O. sativa contained about equal numbers of SLVs, but the SLV distribution was significantly differentiated: indica rice was preferentially associated with longer SLVs and japonica rice with shorter ones. The results may have significant implications regarding the origin and evolution of cultivated rice, as well as the inheritance and molecular evolution of rDNA intergenic spacers in rice. Key words : rDNA, Oryza rufipogon, Oryza sativa, germplasm diversity, evolution.


Genome ◽  
1993 ◽  
Vol 36 (5) ◽  
pp. 978-983 ◽  
Author(s):  
B. C. Winberg ◽  
Z. Zhou ◽  
J. F. Dallas ◽  
C. L. McIntyre ◽  
J. P. Gustafson

Two DNA sequences were cloned from the genome of cultivated rice (Oryza sativa L.) by cross-hybridization with the human minisatellite sequence 33.6. The rice sequences consisted of tandem direct repeats, which showed significant similarity to the 33.6 concensus sequence. Profiles capable of distinguishing different rice cultivars were detected by cross-hybridization with a DNA probe amplified by the polymerase chain reaction from one of the rice minisatellite sequences.Key words: Oryza sativa, minisatellite, hypervariable, DNA fingerprint.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 980
Author(s):  
Ruizhi Yuan ◽  
Neng Zhao ◽  
Babar Usman ◽  
Liang Luo ◽  
Shanyue Liao ◽  
...  

Common wild rice contains valuable resources of novel alleles for rice improvement. It is well known that genetic populations provide the basis for a wide range of genetic and genomic studies. In particular, chromosome segment substitution lines (CSSLs) ais a powerful tool for fine mapping of quantitative traits, new gene discovery and marker-assisted breeding. In this study, 132 CSSLs were developed from a cultivated rice (Oryza sativa) cultivar (93-11) and common wild rice (Oryza rufipogon Griff. DP30) by selfing-crossing, backcrossing and marker-assisted selection (MAS). Based on the high-throughput sequencing of the 93-11 and DP30, 285 pairs of Insertion-deletions (InDel) markers were selected with an average distance of 1.23 Mb. The length of this DP30-CSSLs library was 536.4 cM. The coverage rate of substitution lines cumulatively overlapping the whole genome of DP30 was about 91.55%. DP30-CSSLs were used to analyze the variation for 17 traits leading to the detection of 36 quantitative trait loci (QTLs) with significant phenotypic effects. A cold-tolerant line (RZ) was selected to construct a secondary mapping F2 population, which revealed that qCT2.1 is in the 1.7 Mb region of chromosome 2. These CSSLs may, therefore, provide powerful tools for genome wide large-scale gene discovery in wild rice. This research will also facilitate fine mapping and cloning of QTLs and genome-wide study of wild rice. Moreover, these CSSLs will provide a foundation for rice variety improvement.


Sign in / Sign up

Export Citation Format

Share Document