Molecular cytogenetic characterization of four partial wheat-Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch

2006 ◽  
Vol 112 (8) ◽  
pp. 1473-1479 ◽  
Author(s):  
R. E. Oliver ◽  
S. S. Xu ◽  
R. W. Stack ◽  
T. L. Friesen ◽  
Y. Jin ◽  
...  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jyotirmoy Halder ◽  
Jinfeng Zhang ◽  
Shaukat Ali ◽  
Jagdeep S. Sidhu ◽  
Harsimardeep S. Gill ◽  
...  

Abstract Background In the late 1920s, A. E. Watkins collected about 7000 landrace cultivars (LCs) of bread wheat (Triticum aestivum L.) from 32 different countries around the world. Among which 826 LCs remain viable and could be a valuable source of superior/favorable alleles to enhance disease resistance in wheat. In the present study, a core set of 121 LCs, which captures the majority of the genetic diversity of Watkins collection, was evaluated for identifying novel sources of resistance against tan spot, Stagonospora nodorum blotch (SNB), and Fusarium Head Blight (FHB). Results A diverse response was observed in 121 LCs for all three diseases. The majority of LCs were moderately susceptible to susceptible to tan spot Ptr race 1 (84%) and FHB (96%) whereas a large number of LCs were resistant or moderately resistant against tan spot Ptr race 5 (95%) and SNB (54%). Thirteen LCs were identified in this study could be a valuable source for multiple resistance to tan spot Ptr races 1 and 5, and SNB, and another five LCs could be a potential source for FHB resistance. GWAS analysis was carried out using disease phenotyping score and 8807 SNPs data of 118 LCs, which identified 30 significant marker-trait associations (MTAs) with -log10 (p-value) > 3.0. Ten, five, and five genomic regions were found to be associated with resistance to tan spot Ptr race 1, race 5, and SNB, respectively in this study. In addition to Tsn1, several novel genomic regions Q.Ts1.sdsu-4BS and Q.Ts1.sdsu-5BS (tan spot Ptr race 1) and Q.Ts5.sdsu-1BL, Q.Ts5.sdsu-2DL, Q.Ts5.sdsu-3AL, and Q.Ts5.sdsu-6BL (tan spot Ptr race 5) were also identified. Our results indicate that these putative genomic regions contain several genes that play an important role in plant defense mechanisms. Conclusion Our results suggest the existence of valuable resistant alleles against leaf spot diseases in Watkins LCs. The single-nucleotide polymorphism (SNP) markers linked to the quantitative trait loci (QTLs) for tan spot and SNB resistance along with LCs harboring multiple disease resistance could be useful for future wheat breeding.


2005 ◽  
Vol 28 (2) ◽  
pp. 308-313 ◽  
Author(s):  
Ana Christina Brasileiro-Vidal ◽  
Angeles Cuadrado ◽  
Sandra P. Brammer ◽  
Ana Maria Benko-Iseppon ◽  
Marcelo Guerra

Euphytica ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Qi Zheng ◽  
Bin Li ◽  
Xueyong Zhang ◽  
Sumei Mu ◽  
Hanping Zhou ◽  
...  

Author(s):  
Д.А. Юрченко ◽  
М.Е. Миньженкова ◽  
Е.Л. Дадали ◽  
Н.В. Шилова

Синдром инвертированной дупликации короткого плеча хромосомы 8 со смежной терминальной делециенй (inv dup del(8p), ORPHA 96092) - редкая хромосомная аномалия (ХА) с частотой 1/10000-1/30000 живорожденных. В статье представлены клинические и молекулярно-цитогенетические характеристики двух неродственных пациентов с синдромом inv dup del(8p) и уточнены механизмы формирования хромосомного дисбаланса. Inverted duplication deletion 8p syndrome (inv dup del(8p), ORPHA 96092) is a rare chromosomal abnormality with a frequency of 1:10,000 - 30,000 newborns. Clinical manifestations of this syndrome include mental retardation, facial anomalies, hypoplasia/agenesis of corpus callosum, scoliosis and/or kyphosis, hypotonia, congenital heart defects. The article presents the clinical and molecular cytogenetic characteristics of two patients with inv dup del (8p) syndrome and clarifies the formation mechanisms.


2018 ◽  
Vol 44 (4) ◽  
pp. 473 ◽  
Author(s):  
Zhan-Wang ZHU ◽  
Deng-An XU ◽  
Shun-He CHENG ◽  
Chun-Bao GAO ◽  
Xian-Chun XIA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document