Molecular Cytogenetic Characterization of Wheat–Thinopyrum elongatum Addition, Substitution and Translocation Lines with a Novel Source of Resistance to Wheat Fusarium Head Blight

2012 ◽  
Vol 39 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Shulan Fu ◽  
Zhenling Lv ◽  
Bao Qi ◽  
Xiang Guo ◽  
Jun Li ◽  
...  
2021 ◽  
Author(s):  
Xianrui Guo ◽  
Qinghua Shi ◽  
Jing Yuan ◽  
Mian Wang ◽  
Jing Wang ◽  
...  

AbstractFusarium head blight (FHB), caused by Fusarium species, seriously threaten global wheat production. Three wheat-Th.elongatum FHB resistant translocation lines have been developed and used for breeding. Transcriptomic analysis identified a derivative glutathione S-transferase transcript T26102, which was homologous to Fhb7 and induced dramatically by Fusarium graminearum. Homologs of Fhb7 were detected in several genera in Triticeae, including Thinopyrum, Elymus, Leymus, Pseudoroegeria and Roegeria. Several wheat-Thinopyrum translocation lines carrying Fhb7 remain susceptible to FHB, and transgenic plants overexpressing the T26102 on different backgrounds did not improve the FHB resistance. Taken as a whole, we show the application of the chromatin derived from diploid Thinopyrum elongatum successfully conferring wheat with high level FHB resistance independent of the Fhb7.One Sentence SummaryThinopyrum elongatum chromatin from 7EL was successfully applied to wheat FHB resistance breeding, but the resistant gene other than the reported Fhb7 remained unknown.


2005 ◽  
Vol 111 (5) ◽  
pp. 941-948 ◽  
Author(s):  
Peidu Chen ◽  
Wenxuan Liu ◽  
Jianhua Yuan ◽  
Xiue Wang ◽  
Bo Zhou ◽  
...  

2017 ◽  
Vol 153 (3) ◽  
pp. 165-173 ◽  
Author(s):  
Huiping Liu ◽  
Yi Dai ◽  
Dawn Chi ◽  
Shuai Huang ◽  
Haifeng Li ◽  
...  

Wheatgrass, Thinopyrum elongatum (2n = 2x = 14, EE), is an important wild relative of wheat with many excellent traits, including resistance to Fusarium head blight (FHB), that can be used for durum wheat improvement. Through hybridization of the durum cultivar “Langdon” with the amphiploid 8801 (AABBEE), a disomic alien addition line (2n = 30) with a pair of Th. elongatum 7E chromosomes was obtained and confirmed using chromosome-specific molecular markers of Th. elongatum and genomic in situ hybridization (GISH). This line is meiotically and reproductively stable, generally forming 15 bivalents at meiosis including 14 pairs from Langdon and 1 from Th. elongatum with 2 chiasmata each as revealed by GISH analysis. At the adult growth stages under field conditions, this addition line shows high resistance to FHB, with less than 16% infection on visual observation in 2 years (2014 and 2015). This addition line is shorter in height and has narrower leaves and shorter spikes as compared to its parent Langdon. So the linkage group 7E might be a further source of wheat improvement by targeted introgression approaches.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Biran Gong ◽  
Wei Zhu ◽  
Sanyue Li ◽  
Yuqi Wang ◽  
Lili Xu ◽  
...  

Abstract Background Fusarium head blight (FHB) caused by the fungus Fusarium graminearum Schwabe and stripe rust caused by Puccinia striiformis f. sp. tritici are devastating diseases that affect wheat production worldwide. The use of disease-resistant genes and cultivars is the most effective means of reducing fungicide applications to combat these diseases. Elymus repens (2n = 6x = 42, StStStStHH) is a potentially useful germplasm of FHB and stripe rust resistance for wheat improvement. Results Here, we report the development and characterization of two wheat–E. repens lines derived from the progeny of common wheat–E. repens hybrids. Cytological studies indicated that the mean chromosome configuration of K15–1192-2 and K15–1194-2 at meiosis were 2n = 42 = 0.86 I + 17.46 II (ring) + 3.11 II (rod) and 2n = 42 = 2.45 I + 14.17 II (ring) + 5.50 II (rod) + 0.07 III, respectively. Genomic and fluorescence in situ hybridization karyotyping and simple sequence repeats markers revealed that K15–1192-2 was a wheat–E. repens 3D/?St double terminal chromosomal translocation line. Line K15–1194-2 was identified as harboring a pair of 7DS/?StL Robertsonian translocations and one 3D/?St double terminal translocational chromosome. Further analyses using specific expressed sequence tag-SSR markers confirmed that the wheat–E. repens translocations involved the 3St chromatin in both lines. Furthermore, compared with the wheat parent Chuannong16, K15–1192-2 and K15–1194-2 expressed high levels of resistance to FHB and stripe rust pathogens prevalent in China. Conclusions Thus, this study has determined that the chromosome 3St of E. repens harbors gene(s) highly resistant to FHB and stripe rust, and chromatin of 3St introgressed into wheat chromosomes completely presented the resistance, indicating the feasibility of using these translocation lines as novel material for breeding resistant wheat cultivars and alien gene mining.


Sign in / Sign up

Export Citation Format

Share Document