scholarly journals Role of atypical protein kinase C in activation of sterol regulatory element binding protein-1c and nuclear factor kappa B (NFκB) in liver of rodents used as a model of diabetes, and relationships to hyperlipidaemia and insulin resistance

Diabetologia ◽  
2009 ◽  
Vol 52 (6) ◽  
pp. 1197-1207 ◽  
Author(s):  
M. P. Sajan ◽  
M. L. Standaert ◽  
J. Rivas ◽  
A. Miura ◽  
Y. Kanoh ◽  
...  
2020 ◽  
Vol 245 (9) ◽  
pp. 785-796
Author(s):  
Satyanarayana Alleboina ◽  
Thomas Wong ◽  
Madhu V Singh ◽  
Ayotunde O Dokun

Peripheral artery disease (PAD) is a major health problem and is caused by atherosclerosis in arteries outside the heart leading to impaired blood flow. The presence of diabetes significantly increases the likelihood of having worse outcomes in PAD, and the molecular mechanisms involved are poorly understood. Hyperglycemia in diabetes activates the nuclear factor-kappa B (NF-κB) pathway, and chronic inflammation in diabetes is associated with vascular complications. Ischemia also activates NF-κB signaling that is important for perfusion recovery in experimental PAD. We hypothesized that prolonged exposure of endothelial cells to high glucose in diabetes impairs ischemic activation of the NF-κB pathway and contributes to poor perfusion recovery in experimental PAD. We assessed the effect of high glucose and ischemia on canonical and non-canonical NF-κB activation in endothelial cells and found both conditions activate both pathways. However, exposure of endothelial cells to high glucose impairs ischemia-induced activation of the canonical NF-κB pathway but not the non-canonical pathway. We probed an array of antibodies against signaling proteins in the NF-κB pathway to identify proteins whose phosphorylation status are altered in endothelial cells exposed to high glucose. Protein kinase C beta (PKCβ) was among the proteins identified, and its role in impaired ischemia-induced activation of NF-κB during hyperglycemia has not been previously described. Inhibition of PKCβ improves ischemia-induced NF-κB activation in vitroand in vivo. It also improves perfusion recovery in diabetic mice following experimental PAD. Thus, in diabetes, PKCβ phosphorylation contributes to impaired ischemic activation of NF-κB and likely a mechanism contributing to poor PAD outcomes. Impact statement Diabetes worsens the outcomes of peripheral arterial disease (PAD) likely in part through inducing chronic inflammation. However, in PAD, recovery requires the nuclear factor-kappa B (NF-κB) activation, a known contributor to inflammation. Our study shows that individually, both ischemia and high glucose activate the canonical and non-canonical arms of the NF-κB pathways. We show for the first time that prolonged high glucose specifically impairs ischemia-induced activation of the canonical NF-κB pathway through activation of protein kinase C beta (PKCβ). Accordingly, inhibition of PKCβ restores the ischemia-induced NF-κB activity both in vitroin endothelial cells and in vivoin hind limbs of type 1 diabetic mice and improves perfusion recovery after experimental PAD. Thus, this study provides a mechanistic insight into how diabetes contributes to poor outcomes in PAD and a potential translational approach to improve PAD outcomes.


2006 ◽  
Vol 71 (3) ◽  
pp. 949-956 ◽  
Author(s):  
Marie Eve Moreau ◽  
Marie-Thérèse Bawolak ◽  
Guillaume Morissette ◽  
Albert Adam ◽  
François Marceau

2000 ◽  
Vol 349 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Mark FLEISCHMANN ◽  
Patrick B. IYNEDJIAN

Insulin stimulates the transcription of the sterol regulatory- element binding protein (SREBP) 1/ADD1 gene in liver. Hepatocytes in primary culture were used to delineate the insulin signalling pathway for induction of SREBP1 gene expression. The inhibitors of phosphoinositide 3-kinase (PI 3-kinase), wortmannin and LY 294002, abolished the insulin-dependent increase in SREBP1 mRNA, whereas the inhibitor of the mitogen- activated protein kinase cascade, PD 98059, was without effect. To investigate the role of protein kinase B (PKB)/cAkt downstream of PI 3-kinase, hepatocytes were transduced with an adenovirus encoding a PKB-oestrogen receptor fusion protein. The PKB activity of this recombinant protein was rapidly activated in hepatocytes challenged with 4-hydroxytamoxifen (OHT), as was endogenous PKB in hepatocytes challenged with insulin. The addition of OHT to transduced hepatocytes resulted in accumulation of SREBP1 mRNA, with a time-course and magnitude similar to the effect of insulin in non-transduced cells. The level of SREBP1 mRNA was not increased by OHT in hepatocytes expressing a mutant form of the recombinant protein whose PKB activity was not activated by OHT. Thus acute activation of PKB is sufficient to induce SREBP1 mRNA accumulation in primary hepatocytes, and might be the major signalling event by which insulin induces SREBP1 gene expression in the liver.


Hepatology ◽  
2019 ◽  
Vol 70 (6) ◽  
pp. 2217-2220 ◽  
Author(s):  
Varman T. Samuel ◽  
Max C. Petersen ◽  
Brandon M. Gassaway ◽  
Daniel F. Vatner ◽  
Jesse Rinehart ◽  
...  

2019 ◽  
Vol 317 (4) ◽  
pp. H793-H810 ◽  
Author(s):  
Qiying Fan ◽  
Xing Yin ◽  
Abeer Rababa’h ◽  
Andrea Diaz Diaz ◽  
Cori S. Wijaya ◽  
...  

Gravin, an A-kinase anchoring protein, is known to play a role in regulating key processes that lead to inflammation and atherosclerosis development, namely, cell migration, proliferation, and apoptosis. We investigated the role of gravin in the development of high-fat diet (HFD)-induced atherosclerosis and hyperlipidemia. Five-week-old male wild-type (WT) and gravin-t/t mice were fed a normal diet or an HFD for 16 wk. Gravin-t/t mice showed significantly lower liver-to-body-weight ratio, cholesterol, triglyceride, and very low-density lipoprotein levels in serum as compared with WT mice on HFD. Furthermore, there was less aortic plaque formation coupled with decreased lipid accumulation and liver damage, as the gravin-t/t mice had lower levels of serum alanine aminotransferase and aspartate aminotransferase. Additionally, gravin-t/t HFD-fed mice had decreased expression of liver 3-hydroxy-3-methyl-glutaryl-CoA reductase, an essential enzyme for cholesterol synthesis and lower fatty acid synthase expression. Gravin-t/t HFD-fed mice also exhibited inhibition of sterol regulatory element binding protein-2 (SREBP-2) expression, a liver transcription factor associated with the regulation of lipid transportation. In response to platelet-derived growth factor receptor treatment, gravin-t/t vascular smooth muscle cells exhibited lower intracellular calcium transients and decreased protein kinase A- and protein kinase C-dependent substrate phosphorylation, notably involving the Erk1/2 signaling pathway. Collectively, these results suggest the involvement of gravin-dependent regulation of lipid metabolism via the reduction of SREBP-2 expression. The absence of gravin-mediated signaling lowers blood pressure, reduces plaque formation in the aorta, and decreases lipid accumulation and damage in the liver of HFD mice. Through these processes, the absence of gravin-mediated signaling complex delays the HFD-induced hyperlipidemia and atherosclerosis. NEW & NOTEWORTHY The gravin scaffolding protein plays a key role in the multiple enzymatic pathways of lipid metabolism. We have shown for the first time the novel role of gravin in regulating the pathways related to the initiation and progression of atherosclerosis. Specifically, an absence of gravin-mediated signaling decreases the lipid levels (cholesterol, triglyceride, and VLDL) that are associated with sterol regulatory element binding protein-2 downregulation.


Sign in / Sign up

Export Citation Format

Share Document