scholarly journals Non-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors

Diabetologia ◽  
1998 ◽  
Vol 41 (7) ◽  
pp. 848-854 ◽  
Author(s):  
L. Heinemann ◽  
G. Schmelzeisen-Redeker
2020 ◽  
Vol 8 ◽  
Author(s):  
Yating Chen ◽  
Yulan Tian ◽  
Ping Zhu ◽  
Liping Du ◽  
Wei Chen ◽  
...  

Continuous intensive monitoring of glucose is one of the most important approaches in recovering the quality of life of diabetic patients. One challenge for electrochemical enzymatic glucose sensors is their short lifespan for continuous glucose monitoring. Therefore, it is of great significance to develop non-enzymatic glucose sensors as an alternative approach for long-term glucose monitoring. This study presented a highly sensitive and selective electrochemical non-enzymatic glucose sensor using the electrochemically activated conductive Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 MOFs as sensing materials. The morphology and structure of the MOFs were investigated by scanning SEM and FTIR, respectively. The performance of the activated electrode toward the electrooxidation of glucose in alkaline solution was evaluated with cyclic voltammetry technology in the potential range from 0.2 V to 0.6 V. The electrochemical activated Ni-MOFs exhibited obvious anodic (0.46 V) and cathodic peaks (0.37 V) in the 0.1 M NaOH solution due to the Ni(II)/Ni(III) transfer. A linear relationship between the glucose concentrations (ranging from 0 to 10 mM) and anodic peak currents with R2 = 0.954 was obtained. It was found that the diffusion of glucose was the limiting step in the electrochemical reaction. The sensor exhibited good selectivity toward glucose in the presence of 10-folds uric acid and ascorbic acid. Moreover, this sensor showed good long-term stability for continuous glucose monitoring. The good selectivity, stability, and rapid response of this sensor suggests that it could have potential applications in long-term non-enzymatic blood glucose monitoring.


Author(s):  
Herbert Fink ◽  
Tim Maihöfer ◽  
Jeffrey Bender ◽  
Jochen Schulat

Abstract Blood glucose monitoring (BGM) is the most important part of diabetes management. In classical BGM, glucose measurement by test strips involves invasive finger pricking. We present results of a clinical study that focused on a non-invasive approach based on volatile organic compounds (VOCs) in exhaled breath. Main objective was the discovery of markers for prediction of blood glucose levels (BGL) in diabetic patients. Exhaled breath was measured repeatedly in 60 diabetic patients (30 type 1, 30 type 2) in fasting state and after a standardized meal. Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF-MS) was used to sample breath every 15 minutes for a total of six hours. BGLs were tested in parallel via BGM test strips. VOC signals were plotted against glucose trends for each subject to identify correlations. Exhaled indole (a bacterial metabolite of tryptophan) showed significant mean correlation to BGL (with negative trend) and significant individual correlation in 36 patients. The type of diabetes did not affect this result. Additional experiments of one healthy male subject by ingestion of lactulose and 13C-labeled glucose (n=3) revealed that exhaled indole does not directly originate from food digestion by intestinal microbiota. As indole has been linked to human glucose metabolism, it might be a tentative marker in breath for non-invasive BGM. Clinical studies with greater diversity are required for confirmation of such results and further investigation of metabolic pathways.


2021 ◽  
Vol 10 (18) ◽  
pp. 4116
Author(s):  
Maria Divani ◽  
Panagiotis I. Georgianos ◽  
Triantafyllos Didangelos ◽  
Vassilios Liakopoulos ◽  
Kali Makedou ◽  
...  

Continuous glucose monitoring (CGM) facilitates the assessment of short-term glucose variability and identification of acute excursions of hyper- and hypo-glycemia. Among 37 diabetic hemodialysis patients who underwent 7-day CGM with the iPRO2 device (Medtronic Diabetes, Northridge, CA, USA), we explored the accuracy of glycated albumin (GA) and hemoglobin A1c (HbA1c) in assessing glycemic control, using CGM-derived metrics as the reference standard. In receiver operating characteristic (ROC) analysis, the area under the curve (AUC) in diagnosing a time in the target glucose range of 70–180 mg/dL (TIR70–180) in <50% of readings was higher for GA (AUC: 0.878; 95% confidence interval (CI): 0.728–0.962) as compared to HbA1c (AUC: 0.682; 95% CI: 0.508–0.825) (p < 0.01). The accuracy of GA (AUC: 0.939; 95% CI: 0.808–0.991) in detecting a time above the target glucose range > 250 mg/dL (TAR>250) in >10% of readings did not differ from that of HbA1c (AUC: 0.854; 95% CI: 0.699–0.948) (p = 0.16). GA (AUC: 0.712; 95% CI: 0.539–0.848) and HbA1c (AUC: 0.740; 95% CI: 0.570–0.870) had a similarly lower efficiency in detecting a time below target glucose range < 70 mg/dL (TBR<70) in >1% of readings (p = 0.71). Although the mean glucose levels were similar, the coefficient of variation of glucose recordings (39.2 ± 17.3% vs. 32.0 ± 7.8%, p < 0.001) and TBR<70 (median (range): 5.6% (0, 25.8) vs. 2.8% (0, 17.9)) were higher during the dialysis-on than during the dialysis-off day. In conclusion, the present study shows that among diabetic hemodialysis patients, GA had higher accuracy than HbA1c in detecting a 7-day CGM-derived TIR70–180 < 50%. However, both biomarkers provided an imprecise reflection of acute excursions of hypoglycemia and inter-day glucose variability.


2017 ◽  
Vol 32 (suppl_3) ◽  
pp. iii269-iii269
Author(s):  
Maria Divani ◽  
Panagiotis Georgianos ◽  
Fotios Iliadis ◽  
Triantafyllos Didangelos ◽  
Areti Makedou ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1151 ◽  
Author(s):  
Ruochong Zhang ◽  
Siyu Liu ◽  
Haoran Jin ◽  
Yunqi Luo ◽  
Zesheng Zheng ◽  
...  

Diabetic patients need long-term and frequent glucose monitoring to assist in insulin intake. The current finger-prick devices are painful and costly, which places noninvasive glucose sensors in high demand. In this review paper, we list several advanced electromagnetic (EM)-wave-based technologies for noninvasive glucose measurement, including infrared (IR) spectroscopy, photoacoustic (PA) spectroscopy, Raman spectroscopy, fluorescence, optical coherence tomography (OCT), Terahertz (THz) spectroscopy, and microwave sensing. The development of each method is discussed regarding the fundamental principle, system setup, and experimental results. Despite the promising achievements that have been previously reported, no established product has obtained FDA approval or survived a marketing test. The limitations of, and prospects for, these techniques are presented at the end of this review.


Sign in / Sign up

Export Citation Format

Share Document