Screening and Optimization of Zinc Removal Potential in Pseudomonas aeruginosa-HMR1 and its Plant Growth-Promoting Attributes

Author(s):  
Ali Asger Bhojiya ◽  
Harshada Joshi ◽  
Sudhir K. Upadhyay ◽  
Abhishek K. Srivastava ◽  
Vinayak Vandan Pathak ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Bushra Uzair ◽  
Rehana Kausar ◽  
Syeda Asma Bano ◽  
Sammer Fatima ◽  
Malik Badshah ◽  
...  

The use of microbial technologies in agriculture is currently expanding quite rapidly with the identification of new bacterial strains, which are more effective in promoting plant growth. In the present study 18 strains of Pseudomonas were isolated from soil sample of Balochistan coastline. Among isolated Pseudomonas strains four designated as SP19, SP22, PS24, and SP25 exhibited biocontrol activities against phytopathogenic fungi, that is, Rhizopus microsporus, Fusarium oxysporum, Aspergillus niger, Alternaria alternata, and Penicillium digitatum; PS24 identified as Pseudomonas aeruginosa by 16srRNA gene bank accession number EU081518 was selected on the basis of its antifungal activity to explore its potential as plant growth promotion. PS24 showed multiple plant growth promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA), siderophore, and HCN production. In order to determine the basis for antifungal properties, antibiotics were extracted from King B broth of PS24 and analyzed by TLC. Pyrrolnitrin antibiotic was detected in the culture of strain PS24. PS24 exhibited antifungal activities found to be positive for hydrogen cyanide synthase Hcn BC gene. Sequencing of gene of Hcn BC gene of strain PS24 revealed 99% homology with the Pseudomonas aeruginosa strain PA01. The sequence of PS24 had been submitted in gene bank accession number KR605499. Ps. aeruginosa PS24 with its multifunctional biocontrol possessions can be used to bioprotect the crop plants from phytopathogens.


2013 ◽  
Vol 807-809 ◽  
pp. 2023-2026
Author(s):  
Yu Xiu Zhang ◽  
Pei Li Shi ◽  
Qian Zhang

The cadmium-resistant Pseudomonas aeruginosa strain ZGKD2 was isolated from gangue pile of coal area. Production of siderophores, indole-3-acetic acid (IAA) and the solubilization of phosphate were observed in the strain. Two types of siderophores were identified by UV spectrophotometer. The highest production of IAA and phosphate solubilization were 2.0 ug/mL and 7.2 ug/mL. The root length, plant height and fresh weight of Amorpha fruticosa L in the substrates of Coal gannue and losses were promoted after inoculation with ZGKD2. These data indicated that Pseudomonas aeruginosa strain ZGKD2 was a plant growth-promoting bacterial (PGPB).


Author(s):  
E. Ezaka ◽  
A. K. Akintokun ◽  
P. O. Akintokun ◽  
L. B. Taiwo ◽  
A. C. O. Uthman ◽  
...  

This study was aimed at evaluating the possible utilization of glyphosate tolerant plant growth promoting bacteria (Pseudomonas aeruginosa and Bacillus cereus) for bioremediation of glyphosate polluted soil. The soil samples were spiked with 3.1 mg/ml, 7.2 mg/ml and 14.4 mg/ml of glyphosate and then inoculated with Pseudomonas aeruginosa and Bacillus cereus, level of glyphosate pollution before and after inoculation with the bacteria were determined using Gas Chromatography-Mass Spectroscopy (GC-MS) after extraction with acetonitrile. The bacteria showed significant ability to degrade glyphosate. Pseudomonas aeruginosa, Bacillus cereus, their mixed culture and control recorded percentage degradation of 76.11, 85.8, 75.8 and 49%, respectively at 3.1 mg/ml of glyphosate while At the concentration of 7.2 mg/ml, the percentage degradation by P. aeruginosa, Bacillus cereus, mixed culture of the isolates and control was 84.9, 72.7, 66.4% and 39.2%, respectively. The isolates also showed significant rate of degradation at the concentration of 14.4 mg/ml. The GC-MS results showed a significant variation in the degradation products obtained when compared with control. This study revealed that substantial amount of glyphosate was degraded by P. aeruginosa and Bacillus cereus. Hence, they may have great potential in bioremediation of glyphosate polluted soil.


2017 ◽  
Vol 9 (4) ◽  
pp. 2105-2109
Author(s):  
Ranjna Sharma ◽  
Joginder Pal ◽  
Sheetal Rana ◽  
Mohinder Kaur

Plant growth promoting fluorescent Pseudomonas aeruginosa strains An-E and An- F were used for the suppression of replant disease organisms which were isolated from replant site of apple in Shimla district of Hima-chal Pradesh. Full and half concentration of individual and consortial strains were used for the experiment. Among all the treatments, full concentration of compatible consortial strains were quite effective in decreasing the deleterious rhizobacterial (197-99 cfu/g) and fungal population (7-0 cfu/g). Total rhizobacterial count starts decreasing after each cyclic application of fluorescent P. aeruginosa strains An-E and An-F due to root colonization property of these plant growth promoting strains in the replant site of apple. Establishment of Pseudomonas aeruginosa strains at replant site was inversely correlated with decreasing deleterious bacterial and fungal population in the replant site. 70 per cent survival of apple rootstocks was recorded in full concentration of consortial treatment (An-E and An- F) as compared to control after three years of plantation. Four major fungal pathogens viz. Dematophor anecatrix, Phytophthora cactorum, Pythium ultimum and Fusarium oxysporum were isolated and identified from National centre for fungal taxonomy, New Delhi. These strains can be further exploited and recommended for the management of replant problem of apple.


Author(s):  
Prashan thisandepogu

Pseudomonas aeruginosa Migula is an opportunistic bacteria that lives in soil, water, and even in environments like hot tubs. In present research work studies were conducted on two cultivars of Chenopodium quinoa. Willd was treated with the Strains of Pseudomonas aeruginosa Migula cultured and maintained on nutrient agar medium. Production of the roots and root lets were affected by treatment of PGPR and high number of root lets were reported in 15 days seedlings of Chenopodium quinoa Willd. This Pseudomonas aeruginosa Migula play an important role in soil fertility thus effectively solubilizes fixed phosphorus to exchangeable form and enables solubilization of Phosphorus in soil. Natural Phosphorus solubilization of Pseudomonas aeruginosa Migula improves both plant and soil health and also aids in soil remediation. The population of beneficial Pseudomonas aeruginosa Migula increases the organic content of soil improves soil fertility. Plant Growth Promoting Rhizobacteria (PGPR), plays an important role in improving plant growth. The comprehensive understanding of bacterial plant growth promoting mechanism helps to get sustainable agriculture production under biotic and a biotic stress. PGPR are beneficial for plant growth and also referred as yield increasing bacteria. Treatments with PGPR increases germination percentage, seedling vigor, emergence, plant stand, root and shoot growth, total biomass of the plants, seed weight, early flowering, grains etc., Inoculation of Pseudomonas aeruginosa Migula in agricultural fields improves the uptake of P and N in plants with an increase in leaf chlorophyll, total soluble protein and plant biomass production.


Sign in / Sign up

Export Citation Format

Share Document