scholarly journals Glyphosate Degradation by Two Plant Growth Promoting Bacteria (PGPB) Isolated from Rhizosphere of Maize

Author(s):  
E. Ezaka ◽  
A. K. Akintokun ◽  
P. O. Akintokun ◽  
L. B. Taiwo ◽  
A. C. O. Uthman ◽  
...  

This study was aimed at evaluating the possible utilization of glyphosate tolerant plant growth promoting bacteria (Pseudomonas aeruginosa and Bacillus cereus) for bioremediation of glyphosate polluted soil. The soil samples were spiked with 3.1 mg/ml, 7.2 mg/ml and 14.4 mg/ml of glyphosate and then inoculated with Pseudomonas aeruginosa and Bacillus cereus, level of glyphosate pollution before and after inoculation with the bacteria were determined using Gas Chromatography-Mass Spectroscopy (GC-MS) after extraction with acetonitrile. The bacteria showed significant ability to degrade glyphosate. Pseudomonas aeruginosa, Bacillus cereus, their mixed culture and control recorded percentage degradation of 76.11, 85.8, 75.8 and 49%, respectively at 3.1 mg/ml of glyphosate while At the concentration of 7.2 mg/ml, the percentage degradation by P. aeruginosa, Bacillus cereus, mixed culture of the isolates and control was 84.9, 72.7, 66.4% and 39.2%, respectively. The isolates also showed significant rate of degradation at the concentration of 14.4 mg/ml. The GC-MS results showed a significant variation in the degradation products obtained when compared with control. This study revealed that substantial amount of glyphosate was degraded by P. aeruginosa and Bacillus cereus. Hence, they may have great potential in bioremediation of glyphosate polluted soil.

2021 ◽  
Vol 12 ◽  
Author(s):  
Hu Zhou ◽  
Zuo-hua Ren ◽  
Xue Zu ◽  
Xi-yue Yu ◽  
Hua-jun Zhu ◽  
...  

Bacillus cereus YN917, obtained from a rice leaf with remarkable antifungal activity against Magnaporthe oryzae, was reported in our previous study. The present study deciphered the possible biocontrol properties. YN917 strain exhibits multiple plant growth-promoting and disease prevention traits, including production of indole-3-acetic acid (IAA), ACC deaminase, siderophores, protease, amylase, cellulase, and β-1,3-glucanase, and harboring mineral phosphate decomposition activity. The effects of the strain YN917 on growth promotion and disease prevention were further evaluated under detached leaf and greenhouse conditions. The results revealed that B. cereus YN917 can promote seed germination and seedling plant growth. The growth status of rice plants was measured from the aspects of rice plumule, radicle lengths, plant height, stem width, root lengths, fresh weights, dry weights, and root activity when YN917 was used as inoculants. YN917 significantly reduced rice blast severity under detached leaf and greenhouse conditions. Genome analysis revealed the presence of gene clusters for biosynthesis of plant promotion and antifungal compounds, such as IAA, tryptophan, siderophores, and phenazine. In summary, YN917 can not only be used as biocontrol agents to minimize the use of chemical substances in rice blast control, but also can be developed as bio-fertilizers to promote the rice plant growth.


2013 ◽  
Vol 53 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Viqar Sutana ◽  
Syed Ehteshamul-Haque ◽  
Jehan Ara ◽  
Rashid Qasim ◽  
Abdul Ghaffar

Soil amendment with crustacean chitin used alone or with <em>Pseudomonas aeruginosa Bacillus subtilis</em> significantly (p<0,05) reduced infection of <em>Rhizoctonia solani Fusarium solani</em> on sunflower and <em>R.solani</em> on chickpea. Crab chitin used alone or with <em>P.aeruginosa</em> or <em>B.subtilis</em> completely controlled the infection of <em>Macrophomina phaseolina</em> on chickpea. Prawn or shrimp powder used 1% w/w of soil was found phytotoxic on chickpea but not on sunflower. Maximum fresh weight of shoot was produced by <em>P.aeruginosa</em> used with shrimp powder in sunflower and with crab chitin in chickpea. <em>P.aeruginosa</em> produced greater plant height in chickpea used with shrimp chitin.


Author(s):  
J. Monk ◽  
E. Gerard ◽  
S. Young ◽  
K. Widdup ◽  
M. O'Callaghan

Tall fescue (Festuca arundinacea) is a useful alternative to ryegrass in New Zealand pasture but it is slow to establish. Naturally occurring beneficial bacteria in the rhizosphere can improve plant growth and health through a variety of direct and indirect mechanisms. Keywords: rhizosphere, endorhiza, auxin, siderophore, P-solubilisation


2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Muhammad Mubeen ◽  
Asghari Bano ◽  
Barkat Ali ◽  
Zia Ul Islam ◽  
Ashfaq Ahmad ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Salah Eddin Khabbaz ◽  
D. Ladhalakshmi ◽  
Merin Babu ◽  
A. Kandan ◽  
V. Ramamoorthy ◽  
...  

2008 ◽  
Vol 54 (10) ◽  
pp. 861-867 ◽  
Author(s):  
Kanchalee Jetiyanon ◽  
Sakchai Wittaya-Areekul ◽  
Pinyupa Plianbangchang

The plant growth-promoting rhizobacterium Bacillus cereus RS87 was previously reported to promote plant growth in various crops in both greenhouse and field trials. To apply as a plant growth promoting agent with practical use, it is essential to ease the burden of routine preparation of a fresh suspension of strain RS87 in laboratory. The objectives of this study were to investigate the feasibility of film-coating seeds with B. cereus RS87 spores for early plant growth enhancement and to reveal the indoleacetic acid (IAA) production released from strain RS87. The experiment consisted of the following 5 treatments: nontreated seeds, water-soaked seeds, film-coated seeds, seeds soaked with vegetative cells of strain RS87, and film-coated seeds with strain RS87 spores. Three experiments were conducted separately to assess seed emergence, root length, and plant height. Results showed that both vegetative cells and spores of strain RS87 significantly promoted (P ≤ 0.05) seed emergence, root length and plant height over the control treatments. The strain RS87 also produced IAA. In conclusion, the film coating of seeds with spores of B. cereus RS87 demonstrated early plant growth enhancement as well as seeds using their vegetative cells. IAA released from strain RS87 would be one of the mechanisms for plant growth enhancement.


Sign in / Sign up

Export Citation Format

Share Document