scholarly journals Quinoa Seed Germination and Vigor Index with Bacterization of Pseudomonas aeruginosa Migula. (PGPR).

Author(s):  
Prashan thisandepogu

Pseudomonas aeruginosa Migula is an opportunistic bacteria that lives in soil, water, and even in environments like hot tubs. In present research work studies were conducted on two cultivars of Chenopodium quinoa. Willd was treated with the Strains of Pseudomonas aeruginosa Migula cultured and maintained on nutrient agar medium. Production of the roots and root lets were affected by treatment of PGPR and high number of root lets were reported in 15 days seedlings of Chenopodium quinoa Willd. This Pseudomonas aeruginosa Migula play an important role in soil fertility thus effectively solubilizes fixed phosphorus to exchangeable form and enables solubilization of Phosphorus in soil. Natural Phosphorus solubilization of Pseudomonas aeruginosa Migula improves both plant and soil health and also aids in soil remediation. The population of beneficial Pseudomonas aeruginosa Migula increases the organic content of soil improves soil fertility. Plant Growth Promoting Rhizobacteria (PGPR), plays an important role in improving plant growth. The comprehensive understanding of bacterial plant growth promoting mechanism helps to get sustainable agriculture production under biotic and a biotic stress. PGPR are beneficial for plant growth and also referred as yield increasing bacteria. Treatments with PGPR increases germination percentage, seedling vigor, emergence, plant stand, root and shoot growth, total biomass of the plants, seed weight, early flowering, grains etc., Inoculation of Pseudomonas aeruginosa Migula in agricultural fields improves the uptake of P and N in plants with an increase in leaf chlorophyll, total soluble protein and plant biomass production.

Author(s):  
Md. Shoaib Arifin ◽  
Md. Shafiul Islam Rion ◽  
Atiqur Rahman ◽  
H. M. Zakir ◽  
Quazi Forhad Quadir

Plant growth-promoting rhizobacteria can effectively reduce the severity of different abiotic stresses like water stress, temperature stress, salt stress, etc. on plant growth and development. The study aimed at isolating salt-tolerant rhizobacteria followed by their morphological, biochemical and plant growth promotion traits evaluation. Sixteen root samples of nine different plant species were collected from two locations of Patuakhali, a coastal southern district of Bangladesh. Thirty rhizobacteria were isolated, fifteen from each location, to assess their halotolerance and plant growth promoting potential. The isolated rhizobacteria were subjected to morphological (viz. shape, colour and elevation), biochemical (viz. Gram reaction, catalase test and HCN production) and growth-promoting traits [viz. phosphate solubilizing ability, salt tolerance, indole-3-acetic acid (IAA) production, and N2-fixation] characterization. Twenty-eight isolates were Gram positive, 27 were catalase positive, and nine showed varying degrees of phosphate solubilization on National Botanical Research Institute of Phosphate (NBRIP) medium. Isolate PWB5 showed the highest phosphate solubilizing index (PSI = 3.83±0.098) on the 6th day. To screen salt-tolerant rhizobacteria, the isolates were cultured in NBA media containing different (0%, 2.5%, 5%, 7.5%, 10%, 12%, 15%) NaCl concentrations. Isolate PWB12 and PWB13 grew at 15% NaCl concentration. Eleven isolates exhibited IAA producing ability on Winogradsky medium amended with L-tryptophan among which four (PMB13, PMB14, PMB15 and PWB6) were strong IAA producers. Twenty-seven isolates were potential N2-fixer and among them, 20 were highly efficient, but none of the isolates was HCN producer. The rhizobacteria isolated in the current research work showed some potential plant growth-promoting traits which seem applicable for crop production, especially, under salt stress condition.


HortScience ◽  
2018 ◽  
Vol 53 (6) ◽  
pp. 816-822 ◽  
Author(s):  
Tuan Anh Le ◽  
Zoltán Pék ◽  
Sándor Takács ◽  
András Neményi ◽  
Hussein G. Daood ◽  
...  

Open field experiments were conducted to investigate the effects of plant growth promoting rhizobacteria (PGPR) biofertilizer on processing tomato, grown under three different irrigation regimes. The field effectiveness of rhizobacteria inoculation on total biomass, yield, water use efficiency (WUE), carotenoid, and ascorbic acid production was examined in 2015 and 2016. The experimental design used was randomized block and the number of replications was four for each treatment. There were three different irrigation regimes: rain-fed control (RF), deficit water supply (WS50), and optimum water supply (WS100), which was delivered by drip irrigation in accordance with daily evapotranspiration (ETc). The test was performed on the Uno Rosso F1 processing tomato hybrid. Red fruit were measured at harvest in August and high-performance liquid chromatography (HPLC) was used for analysis. We evaluated yield quantity and total carotenoids and their composition (lycopene and β-carotene) depending on water supplement in 2 years. The marketable yield varied between 14.7 t·ha−1 and 126.9 t·ha−1 depending on treatment. The average soluble solids content (SSC) of the treatments ranged from 3.0 to 8.4. The total carotenoid yields of the treatments ranged from 0.8 to 40.4 kg·ha−1 and the average lycopene yield of the treatments ranged from 0.6 to 34.1 kg·ha−1. The effect of PGPR treatment was clearly positive for harvested yield, but this effect only prevailed under irrigated conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Bushra Uzair ◽  
Rehana Kausar ◽  
Syeda Asma Bano ◽  
Sammer Fatima ◽  
Malik Badshah ◽  
...  

The use of microbial technologies in agriculture is currently expanding quite rapidly with the identification of new bacterial strains, which are more effective in promoting plant growth. In the present study 18 strains of Pseudomonas were isolated from soil sample of Balochistan coastline. Among isolated Pseudomonas strains four designated as SP19, SP22, PS24, and SP25 exhibited biocontrol activities against phytopathogenic fungi, that is, Rhizopus microsporus, Fusarium oxysporum, Aspergillus niger, Alternaria alternata, and Penicillium digitatum; PS24 identified as Pseudomonas aeruginosa by 16srRNA gene bank accession number EU081518 was selected on the basis of its antifungal activity to explore its potential as plant growth promotion. PS24 showed multiple plant growth promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA), siderophore, and HCN production. In order to determine the basis for antifungal properties, antibiotics were extracted from King B broth of PS24 and analyzed by TLC. Pyrrolnitrin antibiotic was detected in the culture of strain PS24. PS24 exhibited antifungal activities found to be positive for hydrogen cyanide synthase Hcn BC gene. Sequencing of gene of Hcn BC gene of strain PS24 revealed 99% homology with the Pseudomonas aeruginosa strain PA01. The sequence of PS24 had been submitted in gene bank accession number KR605499. Ps. aeruginosa PS24 with its multifunctional biocontrol possessions can be used to bioprotect the crop plants from phytopathogens.


2013 ◽  
Vol 807-809 ◽  
pp. 2023-2026
Author(s):  
Yu Xiu Zhang ◽  
Pei Li Shi ◽  
Qian Zhang

The cadmium-resistant Pseudomonas aeruginosa strain ZGKD2 was isolated from gangue pile of coal area. Production of siderophores, indole-3-acetic acid (IAA) and the solubilization of phosphate were observed in the strain. Two types of siderophores were identified by UV spectrophotometer. The highest production of IAA and phosphate solubilization were 2.0 ug/mL and 7.2 ug/mL. The root length, plant height and fresh weight of Amorpha fruticosa L in the substrates of Coal gannue and losses were promoted after inoculation with ZGKD2. These data indicated that Pseudomonas aeruginosa strain ZGKD2 was a plant growth-promoting bacterial (PGPB).


Sign in / Sign up

Export Citation Format

Share Document