Plant Species Diversity of Plant Communities and Heavy Metal Accumulation in Buffer Zone of Momianhe Stream Along a Long-Term Mine Wastes Area, China

Author(s):  
Jiangdi Deng ◽  
Bo Li ◽  
Shan Zhang ◽  
Zuran Li ◽  
Yanqun Zu ◽  
...  
Author(s):  
Frank Berendse ◽  
Rob H. E. M. Geerts ◽  
Wim Th. Elberse ◽  
Thiemo Martijn Bezemer ◽  
Paul W. Goedhart ◽  
...  

2020 ◽  
Vol 194 ◽  
pp. 110433 ◽  
Author(s):  
Qing Xie ◽  
Lishan Qian ◽  
Shanyi Liu ◽  
Yongmin Wang ◽  
Yongjiang Zhang ◽  
...  

2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Hafiza Ab Razak ◽  
Sarva Mangala Praveena ◽  
Zailina Hashim

AbstractToenail is metabolic end product of the skin, which can provide information about heavy metal accumulation in human cells. Slow growth rates of toenail can represent heavy metal exposure from 2 to 12 months before the clipping. The toenail is a non-invasive biomarker that is easy to collect and store and is stable over time. In this systematic review, the suitability of toenail as a long-term biomarker was reviewed, along with the analysis and validation of toenail and confounders to heavy metal. This systematic review has included 30 articles chosen from a total of 132 articles searched from online electronic databases like Pubmed, Proquest, Science Direct, and SCOPUS. Keywords used in the search included “toenail”, “biomarker”, “heavy metal”, and “drinking water”. Heavy metal in toenail can be accurately analyzed using an ICP-MS instrument. The validation of toenail heavy metal concentration data is very crucial; however, the Certified Reference Material (CRM) for toenail is still unavailable. Usually, CRM for hair is used in toenail studies. Confounders that have major effects on heavy metal accumulation in toenail are dietary intake of food and supplement, smoking habit, and overall health condition. This review has identified the advantages and limitations of using toenail as a biomarker for long-term exposure, which can help future researchers design a study on heavy metal exposure using toenail.


Author(s):  
Francesco Lombardi ◽  
Giulia Costa ◽  
Maria Chiara Di Lonardo ◽  
Alessio Lieto

This work evaluated and compared potential impacts related to the accumulation and/or release of heavy metals resulting from the application of different types of stabilized waste to soil. Namely, the following three types of flows were considered: waste produced by aerobic bio-stabilization of municipal solid waste at a Mechanical Biological Treatment (MBT) plant, and compost produced either from aerobic composting or from a combination of anaerobic and aerobic biodegradation processes. After a preliminary characterization of the materials (organic matter content, volatile solid, and heavy metals content), heavy metal accumulation in soil caused by possible long-term application of these organic materials was evaluated by implementing a discretized mass balance based on the total content of the heavy metals in each type of solid matrix investigated. In addition, results of percolation leaching tests performed on each type of material were presented and discussed. Results highlight that although the total content of heavy metals of the three types of materials differed considerably, with the MBT waste presenting the highest concentrations, the results of the leaching percolation tests were quite similar.


Sign in / Sign up

Export Citation Format

Share Document