Multi-objective topology and sizing optimization of truss structures based on adaptive multi-island search strategy

2010 ◽  
Vol 43 (2) ◽  
pp. 275-286 ◽  
Author(s):  
Ruiyi Su ◽  
Xu Wang ◽  
Liangjin Gui ◽  
Zijie Fan
Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 174
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao

Islands are the main platforms for exploration and utilization of marine resources. In this paper, an island hybrid renewable energy microgrid devoted to a stand-alone marine application is established. The specific microgrid is composed of wind turbines, tidal current turbines, and battery storage systems considering the climate resources and precious land resources. A multi-objective sizing optimization method is proposed comprehensively considering the economy, reliability and energy utilization indexes. Three optimization objectives are presented: minimizing the Loss of Power Supply Probability, the Cost of Energy and the Dump Energy Probability. An improved multi-objective grey wolf optimizer based on Halton sequence and social motivation strategy (HSMGWO) is proposed to solve the proposed sizing optimization problem. MATLAB software is utilized to program and simulate the optimization problem of the hybrid energy system. Optimization results confirm that the proposed method and improved algorithm are feasible to optimally size the system, and the energy management strategy effectively matches the requirements of system operation. The proposed HSMGWO shows better convergence and coverage than standard multi-objective grey wolf optimizer (MOGWO) and multi-objective particle swarm optimization (MOPSO) in solving multi-objective sizing problems. Furthermore, the annual operation of the system is simulated, the power generation and economic benefits of each component are analyzed, as well as the sensitivity.


Author(s):  
STEFAN WIEGAND ◽  
CHRISTIAN IGEL ◽  
UWE HANDMANN

For face recognition from video streams speed and accuracy are vital aspects. The first decision whether a preprocessed image region represents a human face or not is often made by a feed-forward neural network (NN), e.g. in the Viisage-FaceFINDER® video surveillance system. We describe the optimisation of such a NN by a hybrid algorithm combining evolutionary multi-objective optimisation (EMO) and gradient-based learning. The evolved solutions perform considerably faster than an expert-designed architecture without loss of accuracy. We compare an EMO and a single objective approach, both with online search strategy adaptation. It turns out that EMO is preferable to the single objective approach in several respects.


2020 ◽  
Vol 6 (8) ◽  
pp. 1411-1427 ◽  
Author(s):  
Yan-Cang Li ◽  
Pei-Dong Xu

In order to find a more effective method in structural optimization, an improved wolf pack optimization algorithm was proposed. In the traditional wolf pack algorithm, the problem of falling into local optimum and low precision often occurs. Therefore, the adaptive step size search and Levy's flight strategy theory were employed to overcome the premature flaw of the basic wolf pack algorithm. Firstly, the reasonable change of the adaptive step size improved the fineness of the search and effectively accelerated the convergence speed. Secondly, the search strategy of Levy's flight was adopted to expand the search scope and improved the global search ability of the algorithm. At last, to verify the performance of improved wolf pack algorithm, it was tested through simulation experiments and actual cases, and compared with other algorithms. Experiments show that the improved wolf pack algorithm has better global optimization ability. This study provides a more effective solution to structural optimization problems.


2019 ◽  
Vol 17 (06) ◽  
pp. 1950016 ◽  
Author(s):  
T. Vo-Duy ◽  
D. Duong-Gia ◽  
V. Ho-Huu ◽  
T. Nguyen-Thoi

This paper proposes an effective couple method for solving reliability-based multi-objective optimization problems of truss structures with static and dynamic constraints. The proposed coupling method integrates a single-loop deterministic method (SLDM) into the nondominated sorting genetic algorithm II (NSGA-II) algorithm to give the so-called SLDM-NSGA-II. Thanks to the advantage of SLDM, the probabilistic constraints are treated as approximating deterministic constraints. And therefore the reliability-based multi-objective optimization problems can be transformed into the deterministic multi-objective optimization problems of which the computational cost is reduced significantly. In these reliability-based multi-objective optimization problems, the conflicting objective functions are to minimize the weight and the displacements of the truss. The design variables are cross-section areas of the bars and contraints include static and dynamic constraints. For reliability analysis, the effect of uncertainty of parameters such as force, added mass in the nodes, material properties and cross-section areas of the bars are taken into account. The effectiveness and reliability of the proposed method are demonstrated through three benchmark-type truss structures including a 10-bar planar truss, a 72-bar spatial truss and a 200-bar planar truss. Moreover, the influence of parameters on the reliability-based Pareto optimal fronts is also carried out.


Sign in / Sign up

Export Citation Format

Share Document