Multi-objective optimization study on the power cooling performance and the cooling drag of a full-scale vehicle

Author(s):  
Sawei Qiu ◽  
Zhigang Xue ◽  
Hong He ◽  
Zhong Yang ◽  
Erli Xia ◽  
...  
2016 ◽  
Vol 48 ◽  
pp. 111-123 ◽  
Author(s):  
Vitor Basto-Fernandes ◽  
Iryna Yevseyeva ◽  
José R. Méndez ◽  
Jiaqi Zhao ◽  
Florentino Fdez-Riverola ◽  
...  

Author(s):  
Xinyu Liu ◽  
Weihang Zhu ◽  
Victor Zaloom

This paper presents a multi-objective optimization study for the micro-milling process with adaptive data modeling based on the process simulation. A micro-milling machining process model was developed and verified through our previous study. Based on the model, a set of simulation data was generated from a factorial design. The data was converted into a surrogate model with adaptive data modeling method. The model has three input variables: axial depth of cut, feed rate and spindle speed. It has two conflictive objectives: minimization of surface location error (which affects surface accuracy) and minimization of total tooling cost. The surrogate model is used in a multi-objective optimization study to obtain the Pareto optimal sets of machining parameters. The visual display of the non-dominated solution frontier allows an engineer to select a preferred machining parameter in order to get a lowest cost solution given the requirement from tolerance and accuracy. The contribution of this study is to provide a streamlined methodology to identify the preferred best machining parameters for micro-milling.


Author(s):  
Saurabh Shukla ◽  
Ankit Anand

Multi-objective optimization of industrial styrene reactor is done using Harmony Search algorithm. Harmony search algorithm is a recently developed meta-heuristic algorithm which is inspired by musical improvisation process aimed towards obtaining the best harmony. Three objective functions – productivity, selectivity and yield are optimized to get best combination of decision variables for styrene reactor. All possible cases of single and multi-objective optimization have been considered. Pareto optimal sets are obtained as a result of the optimization study. Results reveal that optimized solution using harmony search algorithm gives better operating conditions than industrial practice.


2021 ◽  
Vol 309 ◽  
pp. 01010
Author(s):  
Do Duc Trung ◽  
Nguyen Huu Quang ◽  
Tran Quoc Hoang ◽  
Cao The Anh ◽  
Nguyen Hong Linh ◽  
...  

In this article, a multi-objective optimization of turning process study is presented. Two output parameters of the turning process taken into consideration are surface roughness and Material Removal Rate (MRR). Taguchi method has been applied to design the experimental matrix with four input parameters including nose radius, cutting velocity, feed rate and cutting depth. Copras method has been employed to solve the multi-objective optimization problem. Finally, the optimal values of the input parameters have been determined to simultaneously ensure the two criteria of the minimum surface roughness and the maximum MRR.


Author(s):  
Ayyoub Mehdizadeh Momen ◽  
Omar Abdelaziz ◽  
Kyle Gluesenkamp ◽  
Edward Vineyard ◽  
Michael Benedict

While there have been extensive studies on thermofluid characteristics of different magnetocaloric refrigeration systems, a conclusive optimization study using non-dimensional parameters which can be applied to a generic system has not been reported yet. In this study, a numerical model has been developed for optimization of active magnetic refrigerator (AMR). This model is computationally efficient and robust, making it appropriate for running the thousands of simulations required for parametric study and optimization. The governing equations have been non-dimensionalized and numerically solved using finite difference method. A parametric study on a wide range of non-dimensional numbers has been performed. While the goal of AMR systems is to improve the performance of competitive parameters including COP, cooling capacity and temperature span, new parameters called “AMR performance index-1” have been introduced in order to perform multi objective optimization and simultaneously exploit all these parameters. The multi-objective optimization is carried out for a wide range of the non-dimensional parameters. The results of this study will provide general guidelines for designing high performance AMR systems.


Sign in / Sign up

Export Citation Format

Share Document