Linear stability analysis of subaqueous bedforms using direct numerical simulations

2019 ◽  
Vol 33 (2) ◽  
pp. 161-180 ◽  
Author(s):  
N. Zgheib ◽  
S. Balachandar
2011 ◽  
Vol 676 ◽  
pp. 110-144 ◽  
Author(s):  
P. BOHORQUEZ ◽  
E. SANMIGUEL-ROJAS ◽  
A. SEVILLA ◽  
J. I. JIMÉNEZ-GONZÁLEZ ◽  
C. MARTÍNEZ-BAZÁN

We investigate the stability properties and flow regimes of laminar wakes behind slender cylindrical bodies, of diameter D and length L, with a blunt trailing edge at zero angle of attack, combining experiments, direct numerical simulations and local/global linear stability analyses. It has been found that the flow field is steady and axisymmetric for Reynolds numbers below a critical value, Recs (L/D), which depends on the length-to-diameter ratio of the body, L/D. However, in the range of Reynolds numbers Recs(L/D) < Re < Reco(L/D), although the flow is still steady, it is no longer axisymmetric but exhibits planar symmetry. Finally, for Re > Reco, the flow becomes unsteady due to a second oscillatory bifurcation which preserves the reflectional symmetry. In addition, as the Reynolds number increases, we report a new flow regime, characterized by the presence of a secondary, low frequency oscillation while keeping the reflectional symmetry. The results reported indicate that a global linear stability analysis is adequate to predict the first bifurcation, thereby providing values of Recs nearly identical to those given by the corresponding numerical simulations. On the other hand, experiments and direct numerical simulations give similar values of Reco for the second, oscillatory bifurcation, which are however overestimated by the linear stability analysis due to the use of an axisymmetric base flow. It is also shown that both bifurcations can be stabilized by injecting a certain amount of fluid through the base of the body, quantified here as the bleed-to-free-stream velocity ratio, Cb = Wb/W∞.


2012 ◽  
Vol 42 (5) ◽  
pp. 840-854 ◽  
Author(s):  
J. R. Carpenter ◽  
T. Sommer ◽  
A. Wüest

Abstract In this paper, the authors explore the conditions under which a double-diffusive interface may become unstable. Focus is placed on the case of a cold, freshwater layer above a warm, salty layer [i.e., the diffusive convection (DC) regime]. The “diffusive interface” between these layers will develop gravitationally unstable boundary layers due to the more rapid diffusion of heat (the destabilizing component) relative to salt. Previous studies have assumed that a purely convective-type instability of these boundary layers is what drives convection in this system and that this may be parameterized by a boundary layer Rayleigh number. The authors test this theory by conducting both a linear stability analysis and direct numerical simulations of a diffusive interface. Their linear stability analysis reveals that the transition to instability always occurs as an oscillating diffusive convection mode and at boundary layer Rayleigh numbers much smaller than previously thought. However, these findings are based on making a quasi-steady assumption for the growth of the interfaces by molecular diffusion. When diffusing interfaces are modeled (using direct numerical simulations), the authors observe that the time dependence is significant in determining the instability of the boundary layers and that the breakdown is due to a purely convective-type instability. Their findings therefore demonstrate that the relevant instability in a DC staircase is purely convective.


Author(s):  
Xavier Nicolas ◽  
Shihe Xin ◽  
Noussaiba Zoueidi

The aim of the present paper is to characterize a secondary convective instability of Poiseuille-Rayleigh-Be´nard (PRB) mixed convection flows in air that takes the shape of wavy thermoconvective rolls, for 70≤Re≤300 and 3000<Ra<15000. At first, the linear stability analysis by Clever and Busse [JFM, 1991] in the case of PRB flows between two infinite plates is extended to the case of confined channels with a 10 transversal aspect ratio. In the second part, using 3D non linear direct numerical simulations, the space and time development of the chaotic wavy rolls obtained by maintaining a permanent random excitation at channel inlet is analyzed. As the perturbation is designed to cover all the modes, it is possible to detect the modes that are naturally amplified by the flow and those that are damped. It is shown that the wavy roll characteristics obtained in this way vary a lot with Ra increasing and stabilize for Ra>3Ra*. Comparisons with the experiments by Pabiou et al. [JFM, 2005] are proposed.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950090
Author(s):  
Jinhua Tan ◽  
Li Gong ◽  
Xuqian Qin

To depict the effect of low-visibility foggy weather upon traffic flow on a highway with slopes, this paper proposes an extended car-following model taking into consideration the drivers’ misjudgment of the following distance and their active reduction of the velocity. By linear stability analysis, the neutral stability curves are obtained. It is shown that under all the three road conditions: uphill, flat road and downhill, drivers’ misjudgment of the following distance will change the stable regions, while having little effect on the sizes of the stable regions. Correspondingly, drivers’ active reduction of the velocity will increase the stability. The numerical simulations agree well with the analytical results. It indicates that drivers’ misjudgment contributes to a higher velocity. Meanwhile, their active reduction of the velocity helps mitigate the influences of small perturbation. Furthermore, drivers’ misjudgment of the following distance has the greatest effect on downhill and the smallest effect on uphill, so does drivers’ active reduction of the velocity.


This paper explores the basic mechanism underlying the remarkable phenomenon that a forcing excitation stationary in character and sustained at near resonance in a shallow channel of uniform water depth generates a non-stationary response in the form of a sequential upstream emission of solitary waves. Adopting the forced Korteweg-de Vries (fKdV) model and using two of its steady forced solitary wave solutions as primary flows, the stability of these two transcritical steady motions is investigated, and their bifurcation diagrams relating these solutions to other stationary solutions determined, with the forcing held fixed. The corresponding forcing functions are characterized by a velocity parameter for one, and an amplitude parameter for the other of the steadily moving excitations. The linear stability analysis is first pursued for small arbitrary perturbations of the primary flow, leading to a singular, non-self-adjoint eigenvalue problem, which is solved by applying techniques of matched asymptotic expansions with suitable multiscales for singular perturbations, about the isolated bifurcation points of the parametric space pertaining to the stationary perturbations. The eigenvalues and eigenfunctions are then obtained for the full range of the parameters by numerical continuation of the eigenvalues branching off from the stationary-perturbation solutions that were determined by the local analysis. A highly accurate numerical scheme is developed as required for this purpose. The linear stability analysis identifies three categories of evolution of infinitesimal disturbances superimposed to the steady state; they occur in three different parametric regimes. The first, called periodical bifurcating regime, is characterized by complex eigenvalues, with a real part much smaller than the imaginary part, signifying that small departures from the steady state will oscillate with an amplitude growing at a slow exponential rate. In the second regime, called the aperiodical bifurcating regime, the eigenvalues are purely real, implying that small departures from the steady state grow exponentially. For the third regime, linear stability theory is unable to find any eigenvalue (including zero) to exist. In this last case, however, a nonlinear analysis based on the functional hamiltonian formulation is possible, with the hamiltonian conserved for forcings of constant velocity, and the steady state is shown to be stable. For this reason, this regime will be called the stable supercritical regime. Finally, extensive numerical simulations using various finite difference schemes are carried out to find how the solution evolves once the instability of the solution manifests, with results fully confirming the predictions obtained analytically for the various regimes. The numerical simulations show that the instability in the periodical bifurcating regime, for the type of forcings considered, causes the steady solutions to evolve into the phenomenon of periodical production of upstream-advancing solitary waves.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 380
Author(s):  
Noé Lahaye ◽  
Alexandre Paci ◽  
Stefan G. Llewellyn Smith

The instability of surface lenticular vortices is investigated using a comprehensive suite of laboratory experiments combined with numerical linear stability analysis as well as nonlinear numerical simulations in a two-layer Rotating Shallow Water model. The development of instabilities is discussed and compared between the different methods. The linear stability analysis allows for a clear description of the origin of the instability observed in both the laboratory experiments and numerical simulations. While global qualitative agreement is found, some discrepancies are observed and discussed. Our study highlights that the sensitivity of the instability outcome is related to the initial condition and the lower-layer flow. The inhibition or even suppression of some unstable modes may be explained in terms of the lower-layer potential vorticity profile.


Sign in / Sign up

Export Citation Format

Share Document