Stability of forced steady solitary waves

This paper explores the basic mechanism underlying the remarkable phenomenon that a forcing excitation stationary in character and sustained at near resonance in a shallow channel of uniform water depth generates a non-stationary response in the form of a sequential upstream emission of solitary waves. Adopting the forced Korteweg-de Vries (fKdV) model and using two of its steady forced solitary wave solutions as primary flows, the stability of these two transcritical steady motions is investigated, and their bifurcation diagrams relating these solutions to other stationary solutions determined, with the forcing held fixed. The corresponding forcing functions are characterized by a velocity parameter for one, and an amplitude parameter for the other of the steadily moving excitations. The linear stability analysis is first pursued for small arbitrary perturbations of the primary flow, leading to a singular, non-self-adjoint eigenvalue problem, which is solved by applying techniques of matched asymptotic expansions with suitable multiscales for singular perturbations, about the isolated bifurcation points of the parametric space pertaining to the stationary perturbations. The eigenvalues and eigenfunctions are then obtained for the full range of the parameters by numerical continuation of the eigenvalues branching off from the stationary-perturbation solutions that were determined by the local analysis. A highly accurate numerical scheme is developed as required for this purpose. The linear stability analysis identifies three categories of evolution of infinitesimal disturbances superimposed to the steady state; they occur in three different parametric regimes. The first, called periodical bifurcating regime, is characterized by complex eigenvalues, with a real part much smaller than the imaginary part, signifying that small departures from the steady state will oscillate with an amplitude growing at a slow exponential rate. In the second regime, called the aperiodical bifurcating regime, the eigenvalues are purely real, implying that small departures from the steady state grow exponentially. For the third regime, linear stability theory is unable to find any eigenvalue (including zero) to exist. In this last case, however, a nonlinear analysis based on the functional hamiltonian formulation is possible, with the hamiltonian conserved for forcings of constant velocity, and the steady state is shown to be stable. For this reason, this regime will be called the stable supercritical regime. Finally, extensive numerical simulations using various finite difference schemes are carried out to find how the solution evolves once the instability of the solution manifests, with results fully confirming the predictions obtained analytically for the various regimes. The numerical simulations show that the instability in the periodical bifurcating regime, for the type of forcings considered, causes the steady solutions to evolve into the phenomenon of periodical production of upstream-advancing solitary waves.

2011 ◽  
Vol 676 ◽  
pp. 110-144 ◽  
Author(s):  
P. BOHORQUEZ ◽  
E. SANMIGUEL-ROJAS ◽  
A. SEVILLA ◽  
J. I. JIMÉNEZ-GONZÁLEZ ◽  
C. MARTÍNEZ-BAZÁN

We investigate the stability properties and flow regimes of laminar wakes behind slender cylindrical bodies, of diameter D and length L, with a blunt trailing edge at zero angle of attack, combining experiments, direct numerical simulations and local/global linear stability analyses. It has been found that the flow field is steady and axisymmetric for Reynolds numbers below a critical value, Recs (L/D), which depends on the length-to-diameter ratio of the body, L/D. However, in the range of Reynolds numbers Recs(L/D) < Re < Reco(L/D), although the flow is still steady, it is no longer axisymmetric but exhibits planar symmetry. Finally, for Re > Reco, the flow becomes unsteady due to a second oscillatory bifurcation which preserves the reflectional symmetry. In addition, as the Reynolds number increases, we report a new flow regime, characterized by the presence of a secondary, low frequency oscillation while keeping the reflectional symmetry. The results reported indicate that a global linear stability analysis is adequate to predict the first bifurcation, thereby providing values of Recs nearly identical to those given by the corresponding numerical simulations. On the other hand, experiments and direct numerical simulations give similar values of Reco for the second, oscillatory bifurcation, which are however overestimated by the linear stability analysis due to the use of an axisymmetric base flow. It is also shown that both bifurcations can be stabilized by injecting a certain amount of fluid through the base of the body, quantified here as the bleed-to-free-stream velocity ratio, Cb = Wb/W∞.


2017 ◽  
Vol 95 (3) ◽  
pp. 291-296 ◽  
Author(s):  
Pouriya Amini ◽  
Ehsan Khavasi ◽  
Navid Asadizanjani

Stability of two-way coupled particle-laden density current is studied with the aim of linear stability analysis. Interfacial instability can be found in density currents, which effects entrainment and the rate of effective mixing. In this paper, we investigate the density current interfacial instability using linear stability theory, considering the particles attendance. The ultimate goal is to extract the governing equation for current with particles and study the effect of different parameters on stability of such currents. Base flow has velocity and density profiles of tangent hyperbolic type. Main current and particles are studied in two separate phases. It is found that current will be more stable as M0 (M0 = S∗N∗/ρ∗ where ρ∗ is the non-dimensional flow density, S∗ is the Stokes’ drag coefficient, and N∗ is the particles’ number density) grows, this is a result of number of particles and their radius, and also viscosity effects. The current is more stable as the growth rate increases. As the Richardson number in M0 rises, the growth rate value decreases. As the slope of the river bed increases, the current is less stable.


1985 ◽  
Vol 32 (3) ◽  
pp. 1588-1595 ◽  
Author(s):  
L. M. Narducci ◽  
J. R. Tredicce ◽  
L. A. Lugiato ◽  
N. B. Abraham ◽  
D. K. Bandy

2019 ◽  
Vol 30 (11) ◽  
pp. 1950090
Author(s):  
Jinhua Tan ◽  
Li Gong ◽  
Xuqian Qin

To depict the effect of low-visibility foggy weather upon traffic flow on a highway with slopes, this paper proposes an extended car-following model taking into consideration the drivers’ misjudgment of the following distance and their active reduction of the velocity. By linear stability analysis, the neutral stability curves are obtained. It is shown that under all the three road conditions: uphill, flat road and downhill, drivers’ misjudgment of the following distance will change the stable regions, while having little effect on the sizes of the stable regions. Correspondingly, drivers’ active reduction of the velocity will increase the stability. The numerical simulations agree well with the analytical results. It indicates that drivers’ misjudgment contributes to a higher velocity. Meanwhile, their active reduction of the velocity helps mitigate the influences of small perturbation. Furthermore, drivers’ misjudgment of the following distance has the greatest effect on downhill and the smallest effect on uphill, so does drivers’ active reduction of the velocity.


2012 ◽  
Vol 42 (5) ◽  
pp. 840-854 ◽  
Author(s):  
J. R. Carpenter ◽  
T. Sommer ◽  
A. Wüest

Abstract In this paper, the authors explore the conditions under which a double-diffusive interface may become unstable. Focus is placed on the case of a cold, freshwater layer above a warm, salty layer [i.e., the diffusive convection (DC) regime]. The “diffusive interface” between these layers will develop gravitationally unstable boundary layers due to the more rapid diffusion of heat (the destabilizing component) relative to salt. Previous studies have assumed that a purely convective-type instability of these boundary layers is what drives convection in this system and that this may be parameterized by a boundary layer Rayleigh number. The authors test this theory by conducting both a linear stability analysis and direct numerical simulations of a diffusive interface. Their linear stability analysis reveals that the transition to instability always occurs as an oscillating diffusive convection mode and at boundary layer Rayleigh numbers much smaller than previously thought. However, these findings are based on making a quasi-steady assumption for the growth of the interfaces by molecular diffusion. When diffusing interfaces are modeled (using direct numerical simulations), the authors observe that the time dependence is significant in determining the instability of the boundary layers and that the breakdown is due to a purely convective-type instability. Their findings therefore demonstrate that the relevant instability in a DC staircase is purely convective.


Sign in / Sign up

Export Citation Format

Share Document