LINEAR STABILITY ANALYSIS OF STRATIFIED TWO-PHASE FLOW IN A PLANE CHANNEL USING NUMERICAL SIMULATIONS

Author(s):  
Deibi Campos ◽  
Daniel Rodriguez ◽  
Igor de Paula ◽  
Angela Nieckele
Author(s):  
Avinash Vaidheeswaran ◽  
William D. Fullmer ◽  
Krishna Chetty ◽  
Raul G. Marino ◽  
Martin Lopez de Bertodano

The one-dimensional fixed-flux two-fluid model (TFM) is used to analyze the stability of the wavy interface in a slightly inclined pipe geometry. The model is reduced from the complete 1-D TFM, assuming a constant total volumetric flux, which resembles the equations of shallow water theory (SWT). From the point of view of two-phase flow physics, the Kelvin-Helmholtz instability, resulting from the relative motion between the phases, is still preserved after the simplification. Hence, the numerical fixed-flux TFM proves to be an effective tool to analyze local features of two-phase flow, in particular the chaotic behavior of the interface. Experiments on smooth- and wavy-stratified flows with water and gasoline were performed to understand the interface dynamics. The mathematical behavior concerning the well-posedness and stability of the fixed-flux TFM is first addressed using linear stability theory. The findings from the linear stability analysis are also important in developing the eigenvalue based donoring flux-limiter scheme used in the numerical simulations. The stability analysis is extended past the linear theory using nonlinear simulations to estimate the Largest Lyapunov Exponent which confirms the non-linear boundedness of the fixed-flux TFM. Furthermore, the numerical model is shown to be convergent using the power spectra in Fourier space. The nonlinear results are validated with the experimental data. The chaotic behavior of the interface from the numerical predictions is similar to the results from the experiments.


Author(s):  
Mamta Raju Jotkar ◽  
Daniel Rodriguez ◽  
Bruno Marins Soares

2011 ◽  
Vol 676 ◽  
pp. 110-144 ◽  
Author(s):  
P. BOHORQUEZ ◽  
E. SANMIGUEL-ROJAS ◽  
A. SEVILLA ◽  
J. I. JIMÉNEZ-GONZÁLEZ ◽  
C. MARTÍNEZ-BAZÁN

We investigate the stability properties and flow regimes of laminar wakes behind slender cylindrical bodies, of diameter D and length L, with a blunt trailing edge at zero angle of attack, combining experiments, direct numerical simulations and local/global linear stability analyses. It has been found that the flow field is steady and axisymmetric for Reynolds numbers below a critical value, Recs (L/D), which depends on the length-to-diameter ratio of the body, L/D. However, in the range of Reynolds numbers Recs(L/D) < Re < Reco(L/D), although the flow is still steady, it is no longer axisymmetric but exhibits planar symmetry. Finally, for Re > Reco, the flow becomes unsteady due to a second oscillatory bifurcation which preserves the reflectional symmetry. In addition, as the Reynolds number increases, we report a new flow regime, characterized by the presence of a secondary, low frequency oscillation while keeping the reflectional symmetry. The results reported indicate that a global linear stability analysis is adequate to predict the first bifurcation, thereby providing values of Recs nearly identical to those given by the corresponding numerical simulations. On the other hand, experiments and direct numerical simulations give similar values of Reco for the second, oscillatory bifurcation, which are however overestimated by the linear stability analysis due to the use of an axisymmetric base flow. It is also shown that both bifurcations can be stabilized by injecting a certain amount of fluid through the base of the body, quantified here as the bleed-to-free-stream velocity ratio, Cb = Wb/W∞.


2003 ◽  
Vol 125 (2) ◽  
pp. 387-389 ◽  
Author(s):  
Jin Ho Song

A linear stability analysis is performed for a two-phase flow in a channel to demonstrate the feasibility of using momentum flux parameters to improve the one-dimensional two-fluid model. It is shown that the proposed model is stable within a practical range of pressure and void fraction for a bubbly and a slug flow.


Sign in / Sign up

Export Citation Format

Share Document