Varus deformity in the proximal tibia and immediate postoperative varus alignment result in varus progression in limb alignment in the long term after total knee arthroplasty

2020 ◽  
Vol 28 (10) ◽  
pp. 3287-3293
Author(s):  
Yuichi Kuroda ◽  
Koji Takayama ◽  
Shinya Hayashi ◽  
Shingo Hashimoto ◽  
Takehiko Matsushita ◽  
...  
Author(s):  
Francisco Antonio Miralles-Muñoz ◽  
Marta Rubio-Morales ◽  
Laiz Bello-Tejada ◽  
Santiago González-Parreño ◽  
Alejandro Lizaur-Utrilla ◽  
...  

Author(s):  
Nobuhiro Nishihara ◽  
Hironari Masuda ◽  
Naoya Shimazaki ◽  
Seikai Toyooka ◽  
Hirotaka Kawano ◽  
...  

AbstractTechniques for symmetrical balancing in flexion and extension have been described; however, the ideal technique is unclear. This study aimed to clarify whether resection of peripheral osteophytes could restore neutral hip–knee–ankle (HKA) angle of varus deformity of arthritic knees. Data from 90 varus arthritic knees that had undergone total knee arthroplasty (TKA) using a nonimage-based navigation system were analyzed. The change in the coronal mechanical axis, while applying manual valgus stress at extension and 90 degrees of knee flexion, was recorded after the following sequential procedures: (1) anterior cruciate ligament (ACL) sectioning, (2) subperiosteal stripping of the deep medial collateral ligament (MCL) from the underlying osteophytes on the medial tibia, and (3) complete removal of peripheral osteophytes from the proximal medial tibia and distal medial femoral condyle. Repeated measures of analysis of variance (ANOVA) were performed to compare the varus angle among each step, and a post hoc analysis by paired t-test was utilized to compare the parameters between baseline and each step. The varus alignment with valgus stress at extension and 90 degrees of flexion (mean: 6.0 ± 3.6 and 5.2 ± 3.9 degrees of varus, respectively) was significantly corrected to a near-neutral mechanical axis (mean: 0.9 ± 2.4 and 1.4 ± 4.2 degrees of varus, respectively) after peripheral osteophyte resection (p < 0.01, both). In many cases, varus deformity of arthritic knees could be corrected to near-neutral HKA angle by applying manual valgus stress after complete peripheral osteophyte resection. These procedures could facilitate soft tissue balancing in TKA, minimizing the risk of overrelease of the medial soft tissues.


2021 ◽  
Vol 2 (6) ◽  
pp. 397-404
Author(s):  
Fahima A. Begum ◽  
Babar Kayani ◽  
Ahmed A. Magan ◽  
Justin S. Chang ◽  
Fares S. Haddad

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship.


Author(s):  
Jason D. Tegethoff ◽  
Rafael Walker-Santiago ◽  
William M. Ralston ◽  
James A. Keeney

AbstractIsolated polyethylene liner exchange (IPLE) is infrequently selected as a treatment approach for patients with primary total knee arthroplasty (TKA) prosthetic joint instability. Potential advantages of less immediate surgical morbidity, faster recovery, and lower procedural cost need to be measured against reoperation and re-revision risk. Few published studies have directly compared IPLE with combined tibial and femoral component revision to treat patients with primary TKA instability. After obtaining institutional review board (IRB) approval, we performed a retrospective comparison of 20 patients treated with IPLE and 126 patients treated with tibial and femoral component revisions at a single institution between 2011 and 2018. Patient demographic characteristics, medical comorbidities, time to initial revision TKA, and reoperation (90 days, <2 years, and >2 years) were assessed using paired Student's t-test or Fisher's exact test with a p-value <0.01 used to determine significance. Patients undergoing IPLE were more likely to undergo reoperation (60.0 vs. 17.5%, p = 0.001), component revision surgery (45.0 vs. 8.7%, p = 0.002), and component revision within 2 years (30.0 vs. 1.6%, p < 0.0001). Differences in 90-day reoperation (p = 0.14) and revision >2 years (p = 0.19) were not significant. Reoperation for instability (30.0 vs. 4.0%, p < 0.001) and infection (20.0 vs. 1.6%, p < 0.01) were both higher in the IPLE group. IPLE does not provide consistent benefits for patients undergoing TKA revision for instability. Considerations for lower immediate postoperative morbidity and cost need to be carefully measured against long-term consequences of reoperation, delayed component revision, and increased long-term costs of multiple surgical procedures. This is a level III, case–control study.


Author(s):  
Hideki Mizu-uchi ◽  
Hidehiko Kido ◽  
Tomonao Chikama ◽  
Kenta Kamo ◽  
Satoshi Kido ◽  
...  

AbstractThe optimal placement within 3 degrees in coronal alignment was reportedly achieved in only 60 to 80% of patients when using an extramedullary alignment guide for the tibial side in total knee arthroplasty (TKA). This probably occurs because the extramedullary alignment guide is easily affected by the position of the ankle joint which is difficult to define by tibial torsion. Rotational direction of distal end of the extramedullary guide should be aligned to the anteroposterior (AP) axis of the proximal tibia to acquire optimal coronal alignment in the computer simulation studies; however, its efficacy has not been proven in a clinical setting. The distal end of the guide can be overly displaced from the ideal position when using a conventional guide system despite the alignment of the AP axis to the proximal tibia. This study investigated the effect of displacement of the distal end of extramedullary guide relative to the tibial coronal alignment while adjusting the rotational alignment of the distal end to the AP axis of the proximal tibia in TKA. A total of 50 TKAs performed in 50 varus osteoarthritic knees using an image-free navigation system were included in this study. The rotational alignment of the proximal side of the guide was adjusted to the AP axis of the proximal tibia. The position of the distal end of the guide was aligned to the center of the ankle joint as viewed from the proximal AP axis (ideal position) and as determined by the navigation system. The tibial intraoperative coronal alignments were recorded as the distal end was moved from the ideal position at 3-mm intervals. The intraoperative alignments were 0.5, 0.9, and 1.4 degrees in valgus alignment with 3-, 6-, and 9-mm medial displacements, respectively. The intraoperative alignments were 0.7, 1.2, and 1.7 degrees in varus alignment with 3-, 6-, and 9-mm lateral displacements, respectively. In conclusion, the acceptable tibial coronal alignment (within 2 degrees from the optimal alignment) can be achieved, although some displacement of the distal end from the ideal position can occur after the rotational alignment of the distal end of the guide is adjusted to the AP axis of the proximal tibia.


2021 ◽  
Vol 29 (1) ◽  
pp. 230949902110020
Author(s):  
Seikai Toyooka ◽  
Hironari Masuda ◽  
Nobuhiro Nishihara ◽  
Takashi Kobayashi ◽  
Wataru Miyamoto ◽  
...  

Purpose: To evaluate the integrity of lateral soft tissue in varus osteoarthritis knee by comparing the mechanical axis under varus stress during navigation-assisted total knee arthroplasty before and after compensating for a bone defect with the implant. Methods: Sixty-six knees that underwent total knee arthroplasty were investigated. The mechanical axis of the operated knee was evaluated under manual varus stress immediately after knee exposure and after navigation-assisted implantation. The correlation between each value of the mechanical axis and degree of preoperative varus deformity was compared by regression analysis. Results: The maximum mechanical axis under varus stress immediately after knee exposure increased in proportion to the degree of preoperative varus deformity. Moreover, the maximum mechanical axis under varus stress after implantation increased in proportion to the degree of preoperative varus deformity. Therefore, the severity of varus knee deformity leads to a progressive laxity of the lateral soft tissue. However, regression coefficients after implantation were much smaller than those measured immediately after knee exposure (0.99 vs 0.20). Based on the results of the regression formula, the postoperative laxity of the lateral soft tissue was negligible, provided that an appropriate thickness of the implant was compensated for the bone and cartilage defect in the medial compartment without changing the joint line. Conclusion: The severity of varus knee deformity leads to a progressive laxity of the lateral soft tissue. However, even if the degree of preoperative varus deformity is severe, most cases may not require additional procedures to address the residual lateral laxity.


2013 ◽  
Vol 38 (4) ◽  
pp. 747-752 ◽  
Author(s):  
Matthias Bachmann ◽  
Lilianna Bolliger ◽  
Thomas Ilchmann ◽  
Martin Clauss

2005 ◽  
Vol 20 (5) ◽  
pp. 550-561 ◽  
Author(s):  
Arun B. Mullaji ◽  
Vinod Padmanabhan ◽  
Gaurav Jindal

Sign in / Sign up

Export Citation Format

Share Document