A hybrid algorithm based on particle swarm optimization and simulated annealing to holon task allocation for holonic manufacturing system

2006 ◽  
Vol 32 (9-10) ◽  
pp. 1021-1032 ◽  
Author(s):  
Fuqing Zhao ◽  
Yi Hong ◽  
Dongmei Yu ◽  
Yahong Yang ◽  
Qiuyu Zhang ◽  
...  
2020 ◽  
Vol 10 (16) ◽  
pp. 5485
Author(s):  
Ping Su ◽  
Chao Cai ◽  
Yuming Song ◽  
Jianshe Ma ◽  
Qiaofeng Tan

With the rapid development of computer hardware and the emergence of the parallel calculation of diffraction fields, a breakthrough has been made in terms of the limitation of the unacceptable amount of computational cost to design diffractive optical elements (DOEs), and more accurate global search algorithms can be introduced to the design of complex DOEs and holographic projections instead of traditional iterative algorithms. In this paper, a hybrid algorithm which combines particle swarm optimization (PSO) with a simulated annealing (SA) algorithm is proposed for the designing of DOEs and projecting holographic images with less noise. PSO is used to reduce the invalid disturbance in SA, and SA can jump out from local extreme points to find the global extreme points. Compared with the traditional Gerchberg–Saxton (GS) algorithm, the simulation and experimental results demonstrate that the proposed SA–PSO hybrid algorithm can improve uniformity by more than 10%.


Author(s):  
Na Geng ◽  
Zhiting Chen ◽  
Quang A. Nguyen ◽  
Dunwei Gong

AbstractThis paper focuses on the problem of robot rescue task allocation, in which multiple robots and a global optimal algorithm are employed to plan the rescue task allocation. Accordingly, a modified particle swarm optimization (PSO) algorithm, referred to as task allocation PSO (TAPSO), is proposed. Candidate assignment solutions are represented as particles and evolved using an evolutionary process. The proposed TAPSO method is characterized by a flexible assignment decoding scheme to avoid the generation of unfeasible assignments. The maximum number of successful tasks (survivors) is considered as the fitness evaluation criterion under a scenario where the survivors’ survival time is uncertain. To improve the solution, a global best solution update strategy, which updates the global best solution depends on different phases so as to balance the exploration and exploitation, is proposed. TAPSO is tested on different scenarios and compared with other counterpart algorithms to verify its efficiency.


2011 ◽  
Vol 274 ◽  
pp. 101-111 ◽  
Author(s):  
Norelislam Elhami ◽  
Rachid Ellaia ◽  
Mhamed Itmi

This paper presents a new methodology for the Reliability Based Particle Swarm Optimization with Simulated Annealing. The reliability analysis procedure couple traditional and modified first and second order reliability methods, in rectangular plates modelled by an Assumed Modes approach. Both reliability methods are applicable to the implicit limit state functions through numerical models, like those based on the Assumed Mode Method. For traditional reliability approaches, the algorithms FORM and SORM use a Newton-Raphson procedure for estimate design point. In modified approaches, the algorithms are based on heuristic optimization methods such as Particle Swarm Optimization and Simulated Annealing Optimization. Numerical applications in static, dynamic and stability problems are used to illustrate the applicability and effectiveness of proposed methodology. These examples consist in a rectangular plates subjected to in-plane external loads, material and geometrical parameters which are considered as random variables. The results show that the predicted reliability levels are accurate to evaluate simultaneously various implicit limit state functions with respect to static, dynamic and stability criterions.


Sign in / Sign up

Export Citation Format

Share Document