A New Methodology for the Reliability Based Particle Swarm Optimization with Simulated Annealing

2011 ◽  
Vol 274 ◽  
pp. 101-111 ◽  
Author(s):  
Norelislam Elhami ◽  
Rachid Ellaia ◽  
Mhamed Itmi

This paper presents a new methodology for the Reliability Based Particle Swarm Optimization with Simulated Annealing. The reliability analysis procedure couple traditional and modified first and second order reliability methods, in rectangular plates modelled by an Assumed Modes approach. Both reliability methods are applicable to the implicit limit state functions through numerical models, like those based on the Assumed Mode Method. For traditional reliability approaches, the algorithms FORM and SORM use a Newton-Raphson procedure for estimate design point. In modified approaches, the algorithms are based on heuristic optimization methods such as Particle Swarm Optimization and Simulated Annealing Optimization. Numerical applications in static, dynamic and stability problems are used to illustrate the applicability and effectiveness of proposed methodology. These examples consist in a rectangular plates subjected to in-plane external loads, material and geometrical parameters which are considered as random variables. The results show that the predicted reliability levels are accurate to evaluate simultaneously various implicit limit state functions with respect to static, dynamic and stability criterions.

2015 ◽  
Vol 1099 ◽  
pp. 110-119
Author(s):  
Norelislam El Hami ◽  
Mhamed Itmi ◽  
A. El Hami

This paper presents a new methodology for the Reliability Based Particle Swarm Optimization with Simulated Annealing. The reliability analysis procedure couple traditional and modified first and second order reliability methods, in rectangular plates modelled by an Assumed Modes approach. Both reliability methods are applicable to the implicit limit state functions through numerical models, like those based on the Assumed Mode Method. In modified approaches, the algorithms are based on heuristic optimization methods such as Particle Swarm Optimization and Simulated Annealing Optimization. Numerical applications in static, dynamic and stability problems are used to illustrate the applicability and effectiveness of proposed methodology. The results of example show that the predicted reliability levels are accurate to evaluate simultaneously various implicit limit state functions with respect to static, dynamic and stability criterions.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1403 ◽  
Author(s):  
Cheng-Long Wei ◽  
Gai-Ge Wang

The particle swarm optimization algorithm (PSO) is not good at dealing with discrete optimization problems, and for the krill herd algorithm (KH), the ability of local search is relatively poor. In this paper, we optimized PSO by quantum behavior and optimized KH by simulated annealing, so a new hybrid algorithm, named the annealing krill quantum particle swarm optimization (AKQPSO) algorithm, is proposed, and is based on the annealing krill herd algorithm (AKH) and quantum particle swarm optimization algorithm (QPSO). QPSO has better performance in exploitation and AKH has better performance in exploration, so AKQPSO proposed on this basis increases the diversity of population individuals, and shows better performance in both exploitation and exploration. In addition, the quantum behavior increased the diversity of the population, and the simulated annealing strategy made the algorithm avoid falling into the local optimal value, which made the algorithm obtain better performance. The test set used in this paper is a classic 100-Digit Challenge problem, which was proposed at 2019 IEEE Congress on Evolutionary Computation (CEC 2019), and AKQPSO has achieved better performance on benchmark problems.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Wang ◽  
Yongqiang Liu

The strengths and weaknesses of correlation algorithm, simulated annealing algorithm, and particle swarm optimization algorithm are studied in this paper. A hybrid optimization algorithm is proposed by drawing upon the three algorithms, and the specific application processes are given. To extract the current fundamental signal, the correlation algorithm is used. To identify the motor dynamic parameter, the filtered stator current signal is simulated using simulated annealing particle swarm algorithm. The simulated annealing particle swarm optimization algorithm effectively incorporates the global optimization ability of simulated annealing algorithm with the fast convergence of particle swarm optimization by comparing the identification results of asynchronous motor with constant torque load and step load.


Sign in / Sign up

Export Citation Format

Share Document