A simulation platform for optimal selection of robotic belt grinding system parameters

2012 ◽  
Vol 64 (1-4) ◽  
pp. 447-458 ◽  
Author(s):  
Shuihua Wu ◽  
Kazem Kazerounian ◽  
Zhongxue Gan ◽  
Yunquan Sun
2014 ◽  
Vol 536-537 ◽  
pp. 1343-1346
Author(s):  
Da Qi Li ◽  
Lei Zhang ◽  
Wei Dong Ye ◽  
Hai Ying Zu

Blade is one of the important components in aero-engine, turbine, and wind generators. The quality of the blades has big influence on the performance of the machine. So high profile accuracy and low surface roughness were put forward. Ruled blade is just one of the blades of aero-engine, which has simple profile and little distort. This blade was grinded by two sides together in the paper. Therefore, in this thesis, the main objects are as fallow: firstly, according to the characteristics of the abrasive belt grinding, analysis the selection of grinding distance for the blade. Secondly, established the model of contact wheel compare grinding system, derived the range of wrap angle of contact wheel, and then two region were make out, one is the region can be directly grinding, and another region which may lead to wheel interference. At last the grinding path of the center of the contact wheel was obtained by calculated the blade model.


2011 ◽  
Vol 121-126 ◽  
pp. 2030-2034
Author(s):  
Dong Zhang ◽  
Chao Yun ◽  
Ling Zhang

The precision is impacted when the robotic grinding path is discontinuous and the gripper needs to be replaced during manufacturing. In order to solve this problem, a new type PPPRRR grinding robot was proposed. The mathematical model for the robotic grinding paths was set up. The factors including the pose of the workpiece respect to the end joint and the position of contact wheel respect to the robot base frame {O}were analyzed to influence the grinding ability of the system. Base on the Monte Carlo method the posture and position factors above had been optimized, and the grinding ability of the system was increased. The optimization methods were proved right and workable by grinding golf head experiment.


2017 ◽  
Vol 9 (6) ◽  
pp. 168781401770082
Author(s):  
Junde Qi ◽  
Dinghua Zhang ◽  
Shan Li ◽  
Bing Chen

2012 ◽  
Vol 45 (4) ◽  
pp. 41 ◽  
Author(s):  
M. K. Saha ◽  
Santanu Das ◽  
A. Bandyopadhyay ◽  
S. Bandyopadhyay

Sign in / Sign up

Export Citation Format

Share Document