Multi-objective optimization of injection molding process parameters for short cycle time and warpage reduction using conformal cooling channel

2016 ◽  
Vol 88 (5-8) ◽  
pp. 1735-1744 ◽  
Author(s):  
Satoshi Kitayama ◽  
Hiroyasu Miyakawa ◽  
Masahiro Takano ◽  
Shuji Aiba
Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2515
Author(s):  
Wei-Tai Huang ◽  
Chia-Lun Tsai ◽  
Wen-Hsien Ho ◽  
Jyh-Horng Chou

This study focuses on applying intelligent modeling methods to different injection molding process parameters, to analyze the influence of temperature distribution and warpage on the actual development of auto locks. It explores the auto locks using computer-aided engineering (CAE) simulation performance analysis and the optimization of process parameters by combining multiple quality characteristics (warpage and average temperature). In this experimental design, combinations were explored for each single objective optimization process parameter, using the Taguchi robust design process, with the L18 (21 × 37) orthogonal table. The control factors were injection time, material temperature, mold temperature, injection pressure, packing pressure, packing time, cooling liquid, and cooling temperature. The warpage and temperature distribution were analysed as performance indices. Then, signal-to-noise ratios (S/N ratios) were calculated. Gray correlation analysis, with normalization of the S/N ratio, was used to obtain the gray correlation coefficient, which was substituted into the fuzzy theory to obtain the multiple performance characteristic index. The maximum multiple performance characteristic index was used to find multiple quality characteristic-optimized process parameters. The optimal injection molding process parameters with single objective are a warpage of 0.783 mm and an average temperature of 235.23 °C. The optimal parameters with multi-objective are a warpage of 0.753 mm and an average temperature of 238.71 °C. The optimal parameters were then used to explore the different cooling designs (original cooling, square cooling, and conformal cooling), considering the effect of the plastics temperature distribution and warpage. The results showed that, based on the design of the different cooling systems, conformal cooling obtained an optimal warpage of 0.661 mm and a temperature of 237.62 °C. Furthermore, the conformal cooling system is smaller than the original cooling system; it reduces the warpage by 12.2%, and the average temperature by 0.46%.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Saad M. S. Mukras

This paper presents a framework for optimizing injection molding process parameters for minimum product cycle time subjected to constraints on the product defects. Two product defects, namely, volumetric shrinkage and warpage, as well as seven process parameters including injection speed, injection pressure, cooling time, packing pressure, mold temperature, packing time, and melt temperature, were considered. Injection molding experiments were conducted on specifically chosen test points and results were used to compute the volumetric shrinkage and warpage (at each test point). Thereafter, three relationships between the product cycle time (one relationship), the two product defects (two relationships), and the injection molding parameters were constructed using the kriging technique. An optimization problem to minimize the product cycle time (described by the first relationship) subject to constraints on the product defects (described by the latter two relationships) was then formulated. A combination set of points between the lower and upper extreme values of acceptable product defect was generated to serve as constraints for the two product defects. The optimization problem was then solved using the Fmincon function, available in the Matlab optimization toolbox. A plot of the optimization results revealed an appreciable tradeoff between the cycle time and the two product defects. To validate the optimization, an additional injection molding experiment was conducted for one of the optimization results. Results from the additional experiment showed reasonably close agreement with simulation optimization results differing in the cycle time, the warpage and volumetric shrinkage by 6.7%, 3.2%, and 8%, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Khan ◽  
S. Kamran Afaq ◽  
Nizar Ullah Khan ◽  
Saboor Ahmad

Cycle time of a part in injection molding process is very important as the rate of production and the quality of the parts produced depend on it, whereas the cycle time of a part can be reduced by reducing the cooling time which can only be achieved by the uniform temperature distribution in the molded part which helps in quick dissipation of heat. Conformal cooling channel design is the solution to the problem which basically “conforms” to the shape of cavity in the molds. This paper describes the analytical study of cooling analysis of different types of cooling channel designs. The best cooling channel design is also selected on the basis of minimum time to reach ejection temperature, uniform temperature distribution, and minimum warpage of part. “Creo Elements/Pro 5.0” is used to model the case study, its molds, and the cooling circuit whereas analytical study is done using “Autodesk Moldflow Advisor 2013 (AMFA).”


Sign in / Sign up

Export Citation Format

Share Document