Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning of AISI 4140 hardened steel with mixed ceramic tool

2018 ◽  
Vol 97 (5-8) ◽  
pp. 1931-1949 ◽  
Author(s):  
Ikhlas Meddour ◽  
Mohamed Athmane Yallese ◽  
Hamza Bensouilah ◽  
Ahmed Khellaf ◽  
Mohamed Elbah
2020 ◽  
Vol 26 (3) ◽  
pp. 92-98
Author(s):  
Youcef Abidi

AbstractHard machining is a process which has become highly recommended in manufacturing industry to replace grinding and perform production. The important technological parameters that determine this process are tool wear, machined surface roughness, cutting force and morphology of the removed chip. In this work, an attempt has been made to analyse the morphology and form of chip removed during turning of hardened steel AISI 1045 (40HRC) with mixed ceramic tool type CC650. Using a Taguchi plan L9, whose factors are cutting speed and feed rate with three levels for each. Macroscopic and microscopic results of chip morphology were correlated with these two cutting parameters additional to surface roughness. Sufficient experimental results were obtained using the mixed ceramic tool when turning of hardened steel AISI 1045 (40HRC) at high cutting speeds. Roughness of machined surface confirmed that it is influenced by feed rate. Chips show a sawtooth shape for all combinations of the experimental plan used. The chip form changed with cutting parameters variation and given an important indicator of suraface quality for industriel. Having the indicators on the surface quality from simple control of chip without stopping machining give an important advantage in order to maximize production and reduce costs.


2015 ◽  
Vol 39 (2) ◽  
pp. 323-336 ◽  
Author(s):  
Bekir Yalçın

Tool steel has been widely used, especially to manufacture forming dies and molds by machining processes. Generally, cubic boron nitride (CBN) and ceramic tools are recommended for finish machining a specific steel. This study contributes to filling the research gap for the selection of low- content CBN tools or mixed ceramic tools for turning of hard tool steel. The turning tests were conducted to determine the performance of CBN and the mixed ceramic tools in turning soft (HRC22) and hard (HRC52) H13 tool steel with different cutting speeds, feed rates and depths of cut. ANOVA was used to determine the interaction of the cutting parameters on the surface roughness and cutting forces obtained from turning tests. The results indicate that the surface roughness in hard turning was lower with the CBN tool than with the ceramic tool. On the other hand, the cutting forces in turning with the ceramic tool were lower. Acceptable regular chip formation increases with the cutting speed for each tool.


2021 ◽  
Vol 27 (1) ◽  
pp. 30-35
Author(s):  
Youcef Abidi

Abstract Tool wear and surface roughness as performance indexes are considered to be the most important in terms of hardened materials’ machinability. The best combination of cutting parameters which enhances the compromise between tool life, productivity and machined surface quality contribute to benefice on production cost, which makes manufacturing industry interested in it. The aim of this research is to investigate the life of ceramic cutting tool and machining productivity together with surface roughness during turning of hardened steel C45, with focus on the selection of the optimal cutting parameter combination. The experiments are carried out based on uni-factorial planning methodology of cutting speeds and feed rates. The results show that the mixed ceramic tool is suitable for turning hardened steel C45 (40 HRC) and the conclusion is that it performed well in terms of tool life, productivity and surface quality at a combination of cutting speed (200 m/min), feed (0.08 mm/rev) and depth of cut (0.3 mm). Additionally, a tool life model has been proposed which is presented very high coefficient of determination.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6106
Author(s):  
Waleed Ahmed ◽  
Hussien Hegab ◽  
Atef Mohany ◽  
Hossam Kishawy

It is necessary to improve the machinability of difficult-to-cut materials such as hardened steel, nickel-based alloys, and titanium alloys as these materials offer superior properties such as chemical stability, corrosion resistance, and high strength to weight ratio, making them indispensable for many applications. Machining with self-propelled rotary tools (SPRT) is considered one of the promising techniques used to provide proper tool life even under dry conditions. In this work, an attempt has been performed to analyze, model, and optimize the machining process of AISI 4140 hardened steel using self-propelled rotary tools. Experimental analysis has been offered to (a) compare the fixed and rotary tools performance and (b) study the effect of the inclination angle on the surface quality and tool wear. Moreover, the current study implemented some artificial intelligence-based approaches (i.e., genetic programming and NSGA-II) to model and optimize the machining process of AISI 4140 hardened steel with self-propelled rotary tools. The feed rate, cutting velocity, and inclination angle were the selected design variables, while the tool wear, surface roughness, and material removal rate (MRR) were the studied outputs. The optimal surface roughness was obtained at a cutting speed of 240 m/min, an inclination angle of 20°, and a feed rate of 0.1 mm/rev. In addition, the minimum flank tool wear was observed at a cutting speed of 70 m/min, an inclination angle of 10°, and a feed rate of 0.15 mm/rev. Moreover, different weights have been assigned for the three studied outputs to offer different optimized solutions based on the designer’s interest (equal-weighted, finishing, and productivity scenarios). It should be stated that the findings of the current work offer valuable recommendations to select the optimized cutting conditions when machining hardened steel AISI 4140 within the selected ranges.


Sign in / Sign up

Export Citation Format

Share Document