SURFACE ROUGHNESS AND CUTTING FORCES IN TURNING OF TOOL STEEL WITH MIXED CERAMIC AND CUBIC BORON NITRIDE CUTTING TOOLS

2015 ◽  
Vol 39 (2) ◽  
pp. 323-336 ◽  
Author(s):  
Bekir Yalçın

Tool steel has been widely used, especially to manufacture forming dies and molds by machining processes. Generally, cubic boron nitride (CBN) and ceramic tools are recommended for finish machining a specific steel. This study contributes to filling the research gap for the selection of low- content CBN tools or mixed ceramic tools for turning of hard tool steel. The turning tests were conducted to determine the performance of CBN and the mixed ceramic tools in turning soft (HRC22) and hard (HRC52) H13 tool steel with different cutting speeds, feed rates and depths of cut. ANOVA was used to determine the interaction of the cutting parameters on the surface roughness and cutting forces obtained from turning tests. The results indicate that the surface roughness in hard turning was lower with the CBN tool than with the ceramic tool. On the other hand, the cutting forces in turning with the ceramic tool were lower. Acceptable regular chip formation increases with the cutting speed for each tool.

2018 ◽  
Vol 142 ◽  
pp. 03002
Author(s):  
Yunhai Jia ◽  
Lixin Zhu

Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.


2017 ◽  
Vol 41 (1) ◽  
pp. 129-141 ◽  
Author(s):  
K.M. Kumar ◽  
P. Hariharan

This work compares the effect of cubic boron nitride (CBN) and multilayer (TiCN+Al2O3+TiN) coated tungsten carbide (WC) tools during the turning of spheroidal graphite (SG) nodular iron. Nodular irons have more ductility which is required in mechanical components that demand high fatigue resistance like crankshafts, cam shafts, bearing caps and clutch housings. The impact of various process parameters like the depth of cut, cutting speed and feed on the surface roughness (Ra) of SG iron is studied and optimized using the response surface model. The chip morphology is also discussed for evaluation of the quality of the turned surface. The experimental outcomes reveal that the WC tool offers a high surface finish at the optimal combination of the cutting speed at 102 meter/minute, feed at 0.051 millimeter/revolution and depth of cut at 0.5 millimeter and that, for the CBN insert, at 245 meter/minute of cutting speed, 0.051 millimeter/revolution of feed and 0.75 millimeter of depth of cut.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Amrifan Saladin Mohruni ◽  
Muhammad Yanis ◽  
Edwin Kurniawan

Hard turning is an alternative to traditional grinding in the manufacturing industry for hardened ferrous alloy material above 45 HRC. Hard turning has advantages such as lower equipment cost, shorter setup time, fewer process steps, greater part geometry flexibility and elimination of cutting fluid. In this study, the effect of cutting speed and feed rate on surface roughness in hard turning was experimentally investigated. AISI D2 steel workpiece (62 HRC) was machined with Cubic Boron Nitride (CBN) insert under dry machining. A 2k-factorial design with 4 centre points as an initial design of experiment (DOE) and a central composite design (CCD) as augmented design were used in developing the empirical mathematical models. They were employed for analysing the significant machining parameters. The results show that the surface roughness value decreased (smoother) with increasing cutting speed. In contrary, surface roughness value increased significantly when the feed rate increased. Optimum cutting speed and feed rate condition in this experiment was 105 m/min and 0.10 mm/rev respectively with surface roughness value was 0.267 µm. Further investigation revealed that the second order model is a valid surface roughness model, while the linear model cannot be used as a predicted model due to its lack of fit significance.


2016 ◽  
Vol 686 ◽  
pp. 180-185 ◽  
Author(s):  
Marcel Kuruc ◽  
Martin Kusý ◽  
Vladimír Šimna ◽  
Jozef Peterka

Poly-crystalline cubic boron nitride (PCBN) is one of the hardest known material. Therefore only advanced methods are able to treat such material. Advanced machining methods, proper for machining of hard and brittle materials (such as glass and ceramics) include rotary ultrasonic machining (RUM). This method should achieve high precision and low surface roughness (at least during machining of materials such as ceramics). Achievable roughness is affected by machined material and machining parameters. This contribution investigates influence of machining parameters, such as cutting speed and feed rate, on resultant surface roughness during machining of PCBN by rotary ultrasonic machining.


Author(s):  
Michaela Samardžiová ◽  
Miroslav Neslušan

Abstract Hard turning has been applied in machining since the early 1980s. There is an effort to substitute finish grinding by hard machining, because of machining by cutting tool with defined geometry. For machining of hardened steels (up to 45 HRC) are used two different cutting materials. PCBN are used the most for discontinuous machining of hardened steel (up to 63 HRC) and mixed ceramic tools, which are used in the experiment. This paper reports a development of surface roughness parameters when using wiper tool geometry of mixed ceramic tool and conventional geometry of mixed ceramic tool in hard turning. Roughness parameters (Ra, Rz, Rsk, Rku, RSm, Rdq) are measured when changing the feed, depth of cut and cutting speed are constant.


2013 ◽  
Vol 315 ◽  
pp. 241-245 ◽  
Author(s):  
Ali Davoudinejad ◽  
M.Y. Noordin ◽  
Danial Ghodsiyeh ◽  
Sina Alizadeh Ashrafi ◽  
Mohsen Marani Barzani

Hard turning is a dominant machining operation performed on hardened materials using single-point cutting tools. In recent years, hard turning operation has become more and more capable with respect to various machinability criteria. This work deals with machinability of hardened DF-3 tool steel with 55 ±1 HRC hardness at various cutting conditions in terms of tool life, tool wear mechanism and surface roughness. Continuous dry turning tests were carried out using coated, mixed ceramic insert with honed edge geometry. Two different cutting speeds, 100 and 210 m/min, and feed rate values of 0.05, 0.125 and 0.2 mm/rev were used with a 0.2 mm constant depth of cut for all tests. Additionally scanning electron microscope (SEM) was employed to clarify the different types of wear. As far as tool life was concerned, best result was achieved at lowest cutting condition whereas surface roughness values decreased when operating at higher cutting speed and lower feed rate. Additionally maximum volume of material removed is obtained at low cutting speed and high feed rate. Dominant wear mechanism observed during the experiments were flank and crater wear which is mainly caused by abrasive action of the hard workpiece material with the ceramic cutting tools.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 177 ◽  
Author(s):  
Pardeep Kumar ◽  
Sant Ram Chauhan ◽  
Catalin Iulian Pruncu ◽  
Munish Kumar Gupta ◽  
Danil Yurievich Pimenov ◽  
...  

Now-a-days, the application of hard tuning with CBN tool has been massively increased because the hard turning is a good alternative to grinding process. However, there are some issues that need to be addressed related to the CBN grades and their particular applications in the area of hard turning process. This experimental study investigated the effects of three different grades of CBN insert on the cutting forces and surface roughness. The process of hard turning was made using the AISI H13 die tool steel at containing different hardness (45 HRC, 50 HRC and 55 HRC) levels. The work material were selected on the basis of its application in the die making industries in a range of hardness of 45–55 HRC. Optimization by the central composite design approach has been used for design and analysis. The present study reported that the cutting forces and surface roughness are influenced by the alloying elements and percentage of CBN in the cutting tool material. The work material hardness, feed rate and cutting speed are found to be statistically significant on the responses. Furthermore, a comparative performance between the three different grades of CBN inserts has been shown on the cutting forces and surface roughness at different workpiece hardness. To obtain the optimum parameters from multiple responses, desirability approach has been used. The novelty/robustness of the present study is represented by its great contribution to solve practical industrial application when is developed a new process using different CBN grades for hard turning and die makers of workpiece having the hardness between 45 and 55 HRC.


Sign in / Sign up

Export Citation Format

Share Document