Investigation and modeling of microgrooves generated on diamond grinding wheel by abrasive waterjet based on Box–Behnken experimental design

2018 ◽  
Vol 100 (1-4) ◽  
pp. 321-332 ◽  
Author(s):  
Zhenzhong Zhang ◽  
Peng Yao ◽  
Chuanzhen Huang ◽  
Jun Wang ◽  
Donglin Xue ◽  
...  
2014 ◽  
Vol 1017 ◽  
pp. 243-248 ◽  
Author(s):  
Peng Yao ◽  
Wei Wang ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Hong Tao Zhu ◽  
...  

A grinding wheel wears rapidly during ultrasonic assisted surface generation of a large aperture aspherical RB-SiC mirror, which leads to an increase of grinding force and profile error. In this paper, different types of resinoid bonded diamond grinding wheel with a same grit size were dressed with high-pressure abrasive water jet. The dressing effects of abrasive water jet were assessed through comparing the 3D roughness of the grinding wheel topographies before and after dressing. The experimental results show that diamond grits of a worn grinding wheel are protruding from bond after dressing. The feed rate of nozzle and the bond materials have significant impact on the 3D surface roughness of the wheel and dressing efficient. The softer binder and the decrease of the feed rates and lead to deeper grooves during dressing of grinding wheel. However, too low feed rate will make a large number of abrasive particles drop from binder, which worsens the wheel topography. Therefore, to dress grinding wheel well and efficiently, optimized feed rate must be chosen.


2017 ◽  
Vol 93 (9-12) ◽  
pp. 3063-3073 ◽  
Author(s):  
Zhenzhong Zhang ◽  
Peng Yao ◽  
Zhiyu Zhang ◽  
Donglin Xue ◽  
Chong Wang ◽  
...  

2008 ◽  
Vol 389-390 ◽  
pp. 36-41
Author(s):  
Feng Wei Huo ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin

A 3D profiler based on scanning white light interferometry with a lateral sampling interval of 0.11μm was introduced to measure the surface topography of a #3000 diamond grinding wheel, and a large sampling area could be achieved by its stitching capability without compromising its lateral or vertical resolution. The protrusion height distribution of diamond grains and the static effective grain density of the grinding wheel were derived, and the wheel chatter and the deformation of the wheel were analyzed as well. The study shows that the grain protrusion height obeys an approximate normal distribution, the static effective grain density is much lower than the theoretical density, and only a small number of diamond grains are effective in the grinding process with fine diamond grinding wheel. There exists waviness on the grinding wheel surface parallel with the wheel cutting direction. The cutting surface of the grinding wheel is not flat but umbilicate, which indicates that the elastic deformation at the wheel edges is much larger than in the center region.


1989 ◽  
Vol 55 (512) ◽  
pp. 1106-1109
Author(s):  
Yoongyo JUNG ◽  
Ichiro INASAKI ◽  
Satoshi MATSUl

2014 ◽  
Vol 22 (12) ◽  
pp. 3167-3174 ◽  
Author(s):  
崔长彩 CUI Chang-cai ◽  
余卿 YU Qing ◽  
张遨 ZHANG Ao ◽  
李瑞旭 LI Rui-xu ◽  
黄辉 HUANG Hui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document