Investigation on strengthening of 7075 aluminum alloy sheet in a new hot stamping process with pre-cooling

2019 ◽  
Vol 103 (9-12) ◽  
pp. 4739-4746 ◽  
Author(s):  
Lijuan Zhu ◽  
Zhaoxiang Liu ◽  
Zhiqiang Zhang
2016 ◽  
Vol 877 ◽  
pp. 393-399
Author(s):  
Jia Zhou ◽  
Jun Ping Zhang ◽  
Ming Tu Ma

This paper presents the main achievements of a research project aimed at investigating the applicability of the hot stamping technology to non heat treatable aluminium alloys of the 5052 H32 and heat treatable aluminium alloys of the 6016 T4P after six months natural aging. The formability and mechanical properties of 5052 H32 and 6016 T4P aluminum alloy sheets after six months natural aging under different temperature conditions were studied, the processing characteristics and potential of the two aluminium alloy at room and elevated temperature were investigated. The results indicated that the 6016 aluminum alloy sheet exhibit better mechanical properties at room temperature. 5052 H32 aluminum alloy sheet shows better formability at elevated temperature, and it has higher potential to increase formability by raising the temperature.


2021 ◽  
Vol 871 ◽  
pp. 73-79
Author(s):  
Jin Bo Li

In this study, the effect of forming temperature, blank holder force, die entrance radius, die corner radius and blank local thickening on the springback of square cups were studied, by conducting finite element simulations of the hot stamping of 2024 aluminum alloy sheet blanks. Within the range of process parameters investigated in this study, increasing the forming temperature, blank holder force and die corner radius or decreasing the die entrance radius all lead to lower values of springback in hot stamped square cups after unloading. Compared to uniform blank, local-thickened sheet blank can significantly reduce the springback in hot stamped square cup. When the side length of the square-ring-shaped convex rib of the thickened blank is equal to the punch width and the convex rib faces downward, significant reductions in the springback, of at least 55.9%, can be achieved.


Sign in / Sign up

Export Citation Format

Share Document