Closed loop control of melt pool width in robotized laser powder–directed energy deposition process

2019 ◽  
Vol 104 (5-8) ◽  
pp. 2887-2898 ◽  
Author(s):  
Meysam Akbari ◽  
Radovan Kovacevic
2019 ◽  
Vol 62 (4) ◽  
pp. 213-217 ◽  
Author(s):  
Abdollah Saboori ◽  
Sara Biamino ◽  
Mariangela Lombardi ◽  
Simona Tusacciu ◽  
Mattia Busatto ◽  
...  

Author(s):  
Brian T. Gibson ◽  
Brad S. Richardson ◽  
Taylor W. Sundermann ◽  
Lonnie J. Love

A variety of techniques have been utilized in metal additive manufacturing (AM) for melt pool size management, including modeling and feed-forward approaches. In a few cases, closed-loop control has been demonstrated. In this research, closed-loop melt pool size control for large-scale, laser-wire based Directed Energy Deposition is demonstrated with a novel modification: site-specific changes to the controller set-point were commanded at trigger points, the locations of which were generated by the projection of a secondary geometry onto the primary 3D-printed component geometry. The present work shows that, through this technique, it is possible to print a specific geometry that occurs beyond the actual toolpath of the print head. This is denoted as an extra-toolpath geometry and is fundamentally different from other methods of generating component features in metal AM. A proof-of-principle experiment is presented in which a complex oak leaf geometry was embossed on an otherwise ordinary double-bead wall made from Ti-6Al-4V. The process is introduced and characterized primarily from a controls perspective with reports on the performance of the control system, the melt pool size response, and the resulting geometry. The implications of this capability, which extend beyond localized control of bead geometry to the potential mitigations of defects and functional grading of component properties, are discussed.


2019 ◽  
Vol 9 (20) ◽  
pp. 4355
Author(s):  
Brian T. Gibson ◽  
Bradley S. Richardson ◽  
Tayler W. Sundermann ◽  
Lonnie J. Love

A variety of techniques have been utilized in metal additive manufacturing (AM) for melt pool size management, including modeling and feed-forward approaches. In a few cases, closed-loop control has been demonstrated. In this research, closed-loop melt pool size control for large-scale, laser wire-based directed energy deposition is demonstrated with a novel modification, i.e., site-specific changes to the controller setpoint were commanded at trigger points, the locations of which were generated by the projection of a secondary geometry onto the primary three-dimensional (3D) printed component geometry. The present work shows that, through this technique, it is possible to print a specific geometry that occurs beyond the actual toolpath of the print head. This is denoted as extra-toolpath geometry and is fundamentally different from other methods of generating component features in metal AM. A proof-of-principle experiment is presented in which a complex oak leaf geometry was embossed on an otherwise ordinary double-bead wall made from Ti-6Al-4V. The process is introduced and characterized primarily from a controls perspective with reports on the performance of the control system, the melt pool size response, and the resulting geometry. The implications of this capability, which extend beyond localized control of bead geometry to the potential mitigations of defects and functional grading of component properties, are discussed.


2020 ◽  
Vol 32 ◽  
pp. 100993 ◽  
Author(s):  
B.T. Gibson ◽  
Y.K. Bandari ◽  
B.S. Richardson ◽  
W.C. Henry ◽  
E.J. Vetland ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 634
Author(s):  
Agnieszka Kisielewicz ◽  
Karthikeyan Thalavai Pandian ◽  
Daniel Sthen ◽  
Petter Hagqvist ◽  
Maria Asuncion Valiente Bermejo ◽  
...  

This study investigates the influence of resistive pre-heating of the feedstock wire (here called hot-wire) on the stability of laser-directed energy deposition of Duplex stainless steel. Data acquired online during depositions as well as metallographic investigations revealed the process characteristic and its stability window. The online data, such as electrical signals in the pre-heating circuit and images captured from side-view of the process interaction zone gave insight on the metal transfer between the molten wire and the melt pool. The results show that the characteristics of the process, like laser-wire and wire-melt pool interaction, vary depending on the level of the wire pre-heating. In addition, application of two independent energy sources, laser beam and electrical power, allows fine-tuning of the heat input and increases penetration depth, with little influence on the height and width of the beads. This allows for better process stability as well as elimination of lack of fusion defects. Electrical signals measured in the hot-wire circuit indicate the process stability such that the resistive pre-heating can be used for in-process monitoring. The conclusion is that the resistive pre-heating gives additional means for controlling the stability and the heat input of the laser-directed energy deposition.


2021 ◽  
Vol 53 ◽  
pp. 576-584
Author(s):  
Kandice S.B. Ribeiro ◽  
Henrique H.L. Núñez ◽  
Jason B. Jones ◽  
Peter Coates ◽  
Reginaldo T. Coelho

Sign in / Sign up

Export Citation Format

Share Document