Point cloud 3D parent surface reconstruction and weld seam feature extraction for robotic grinding path planning

2020 ◽  
Vol 107 (1-2) ◽  
pp. 827-841
Author(s):  
Xiangfei Wang ◽  
Xiaoqiang Zhang ◽  
Xukai Ren ◽  
Lufeng Li ◽  
Hengjian Feng ◽  
...  
2017 ◽  
Vol 15 (3) ◽  
pp. 390-398
Author(s):  
Tianyun Yuan ◽  
Xiaobo Peng ◽  
Dongdong Zhang

Author(s):  
Mahdi Saleh ◽  
Shervin Dehghani ◽  
Benjamin Busam ◽  
Nassir Navab ◽  
Federico Tombari

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 642
Author(s):  
Luis Miguel González de Santos ◽  
Ernesto Frías Nores ◽  
Joaquín Martínez Sánchez ◽  
Higinio González Jorge

Nowadays, unmanned aerial vehicles (UAVs) are extensively used for multiple purposes, such as infrastructure inspections or surveillance. This paper presents a real-time path planning algorithm in indoor environments designed to perform contact inspection tasks using UAVs. The only input used by this algorithm is the point cloud of the building where the UAV is going to navigate. The algorithm is divided into two main parts. The first one is the pre-processing algorithm that processes the point cloud, segmenting it into rooms and discretizing each room. The second part is the path planning algorithm that has to be executed in real time. In this way, all the computational load is in the first step, which is pre-processed, making the path calculation algorithm faster. The method has been tested in different buildings, measuring the execution time for different paths calculations. As can be seen in the results section, the developed algorithm is able to calculate a new path in 8–9 milliseconds. The developed algorithm fulfils the execution time restrictions, and it has proven to be reliable for route calculation.


2021 ◽  
Vol 10 (3) ◽  
pp. 157
Author(s):  
Paul-Mark DiFrancesco ◽  
David A. Bonneau ◽  
D. Jean Hutchinson

Key to the quantification of rockfall hazard is an understanding of its magnitude-frequency behaviour. Remote sensing has allowed for the accurate observation of rockfall activity, with methods being developed for digitally assembling the monitored occurrences into a rockfall database. A prevalent challenge is the quantification of rockfall volume, whilst fully considering the 3D information stored in each of the extracted rockfall point clouds. Surface reconstruction is utilized to construct a 3D digital surface representation, allowing for an estimation of the volume of space that a point cloud occupies. Given various point cloud imperfections, it is difficult for methods to generate digital surface representations of rockfall with detailed geometry and correct topology. In this study, we tested four different computational geometry-based surface reconstruction methods on a database comprised of 3668 rockfalls. The database was derived from a 5-year LiDAR monitoring campaign of an active rock slope in interior British Columbia, Canada. Each method resulted in a different magnitude-frequency distribution of rockfall. The implications of 3D volume estimation were demonstrated utilizing surface mesh visualization, cumulative magnitude-frequency plots, power-law fitting, and projected annual frequencies of rockfall occurrence. The 3D volume estimation methods caused a notable shift in the magnitude-frequency relations, while the power-law scaling parameters remained relatively similar. We determined that the optimal 3D volume calculation approach is a hybrid methodology comprised of the Power Crust reconstruction and the Alpha Solid reconstruction. The Alpha Solid approach is to be used on small-scale point clouds, characterized with high curvatures relative to their sampling density, which challenge the Power Crust sampling assumptions.


2011 ◽  
Vol 299-300 ◽  
pp. 1091-1094 ◽  
Author(s):  
Jiang Zhu ◽  
Yuichi Takekuma ◽  
Tomohisa Tanaka ◽  
Yoshio Saito

Currently, design and processing of complicated model are enabled by the progress of the CAD/CAM system. In shape measurement, high precision measurement is performed using CMM. In order to evaluate the machined part, the designed model made by CAD system the point cloud data provided by the measurement system are analyzed and compared. Usually, the designed CAD model and measured point cloud data are made in the different coordinate systems, it is necessary to register those models in the same coordinate system for evaluation. In this research, a 3D model registration method based on feature extraction and iterative closest point (ICP) algorithm is proposed. It could efficiently and accurately register two models in different coordinate systems, and effectively avoid the problem of localized solution.


Sign in / Sign up

Export Citation Format

Share Document