scholarly journals Computational Geometry-Based Surface Reconstruction for Volume Estimation: A Case Study on Magnitude-Frequency Relations for a LiDAR-Derived Rockfall Inventory

2021 ◽  
Vol 10 (3) ◽  
pp. 157
Author(s):  
Paul-Mark DiFrancesco ◽  
David A. Bonneau ◽  
D. Jean Hutchinson

Key to the quantification of rockfall hazard is an understanding of its magnitude-frequency behaviour. Remote sensing has allowed for the accurate observation of rockfall activity, with methods being developed for digitally assembling the monitored occurrences into a rockfall database. A prevalent challenge is the quantification of rockfall volume, whilst fully considering the 3D information stored in each of the extracted rockfall point clouds. Surface reconstruction is utilized to construct a 3D digital surface representation, allowing for an estimation of the volume of space that a point cloud occupies. Given various point cloud imperfections, it is difficult for methods to generate digital surface representations of rockfall with detailed geometry and correct topology. In this study, we tested four different computational geometry-based surface reconstruction methods on a database comprised of 3668 rockfalls. The database was derived from a 5-year LiDAR monitoring campaign of an active rock slope in interior British Columbia, Canada. Each method resulted in a different magnitude-frequency distribution of rockfall. The implications of 3D volume estimation were demonstrated utilizing surface mesh visualization, cumulative magnitude-frequency plots, power-law fitting, and projected annual frequencies of rockfall occurrence. The 3D volume estimation methods caused a notable shift in the magnitude-frequency relations, while the power-law scaling parameters remained relatively similar. We determined that the optimal 3D volume calculation approach is a hybrid methodology comprised of the Power Crust reconstruction and the Alpha Solid reconstruction. The Alpha Solid approach is to be used on small-scale point clouds, characterized with high curvatures relative to their sampling density, which challenge the Power Crust sampling assumptions.

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 75
Author(s):  
Dario Carrea ◽  
Antonio Abellan ◽  
Marc-Henri Derron ◽  
Neal Gauvin ◽  
Michel Jaboyedoff

The use of 3D point clouds to improve the understanding of natural phenomena is currently applied in natural hazard investigations, including the quantification of rockfall activity. However, 3D point cloud treatment is typically accomplished using nondedicated (and not optimal) software. To fill this gap, we present an open-source, specific rockfall package in an object-oriented toolbox developed in the MATLAB® environment. The proposed package offers a complete and semiautomatic 3D solution that spans from extraction to identification and volume estimations of rockfall sources using state-of-the-art methods and newly implemented algorithms. To illustrate the capabilities of this package, we acquired a series of high-quality point clouds in a pilot study area referred to as the La Cornalle cliff (West Switzerland), obtained robust volume estimations at different volumetric scales, and derived rockfall magnitude–frequency distributions, which assisted in the assessment of rockfall activity and long-term erosion rates. An outcome of the case study shows the influence of the volume computation on the magnitude–frequency distribution and ensuing erosion process interpretation.


2021 ◽  
Author(s):  
Ali Mirzazade ◽  
Cosmin Popescu ◽  
Thomas Blanksvärd ◽  
Björn Täljsten

<p>In bridge inspection, vertical displacement is a relevant parameter for both short and long-term health monitoring. Assessing change in deflections could also simplify the assessment work for inspectors. Recent developments in digital camera technology and photogrammetry software enables point cloud with colour information (RGB values) to be generated. Thus, close range photogrammetry offers the potential of monitoring big and small-scale damages by point clouds. The current paper aims to monitor geometrical deviations in Pahtajokk Bridge, Northern Sweden, using an optical data acquisition technique. The bridge in this study is scanned two times by almost one year a part. After point cloud generation the datasets were compared to detect geometrical deviations. First scanning was carried out by both close range photogrammetry (CRP) and terrestrial laser scanning (TLS), while second scanning was performed by CRP only. Analyzing the results has shown the potential of CRP in bridge inspection.</p>


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2454 ◽  
Author(s):  
Ting Chan ◽  
Derek Lichti ◽  
Adam Jahraus ◽  
Hooman Esfandiari ◽  
Herve Lahamy ◽  
...  

Measuring the volume of bird eggs is a very important task for the poultry industry and ornithological research due to the high revenue generated by the industry. In this paper, we describe a prototype of a new metrological system comprising a 3D range camera, Microsoft Kinect (Version 2) and a point cloud post-processing algorithm for the estimation of the egg volume. The system calculates the egg volume directly from the egg shape parameters estimated from the least-squares method in which the point clouds of eggs captured by the Kinect are fitted to novel geometric models of an egg in a 3D space. Using the models, the shape parameters of an egg are estimated along with the egg’s position and orientation simultaneously under the least-squares criterion. Four sets of experiments were performed to verify the functionality and the performance of the system, while volumes estimated from the conventional water displacement method and the point cloud captured by a survey-grade laser scanner serve as references. The results suggest that the method is straightforward, feasible and reliable with an average egg volume estimation accuracy 93.3% when compared to the reference volumes. As a prototype, the software part of the system was implemented in a post-processing mode. However, as the proposed processing techniques is computationally efficient, the prototype can be readily transformed into a real-time egg volume system.


2022 ◽  
Vol 14 (2) ◽  
pp. 367
Author(s):  
Zhen Zheng ◽  
Bingting Zha ◽  
Yu Zhou ◽  
Jinbo Huang ◽  
Youshi Xuchen ◽  
...  

This paper proposes a single-stage adaptive multi-scale noise filtering algorithm for point clouds, based on feature information, which aims to mitigate the fact that the current laser point cloud noise filtering algorithm has difficulty quickly completing the single-stage adaptive filtering of multi-scale noise. The feature information from each point of the point cloud is obtained based on the efficient k-dimensional (k-d) tree data structure and amended normal vector estimation methods, and the adaptive threshold is used to divide the point cloud into large-scale noise, a feature-rich region, and a flat region to reduce the computational time. The large-scale noise is removed directly, the feature-rich and flat regions are filtered via improved bilateral filtering algorithm and weighted average filtering algorithm based on grey relational analysis, respectively. Simulation results show that the proposed algorithm performs better than the state-of-art comparison algorithms. It was, thus, verified that the algorithm proposed in this paper can quickly and adaptively (i) filter out large-scale noise, (ii) smooth small-scale noise, and (iii) effectively maintain the geometric features of the point cloud. The developed algorithm provides research thought for filtering pre-processing methods applicable in 3D measurements, remote sensing, and target recognition based on point clouds.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 197
Author(s):  
Emil Dumic ◽  
Anamaria Bjelopera ◽  
Andreas Nüchter

In this paper we will present a new dynamic point cloud compression based on different projection types and bit depth, combined with the surface reconstruction algorithm and video compression for obtained geometry and texture maps. Texture maps have been compressed after creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture (H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction algorithm. Comparison with the original point clouds was performed using point-to-point and point-to-plane measures. Comprehensive experiments show better performance for some projection maps: cylindrical, Miller and Mercator projections.


2021 ◽  
Vol 10 (11) ◽  
pp. 762
Author(s):  
Kaisa Jaalama ◽  
Heikki Kauhanen ◽  
Aino Keitaanniemi ◽  
Toni Rantanen ◽  
Juho-Pekka Virtanen ◽  
...  

The importance of ensuring the adequacy of urban ecosystem services and green infrastructure has been widely highlighted in multidisciplinary research. Meanwhile, the consolidation of cities has been a dominant trend in urban development and has led to the development and implementation of the green factor tool in cities such as Berlin, Melbourne, and Helsinki. In this study, elements of the green factor tool were monitored with laser-scanned and photogrammetrically derived point cloud datasets encompassing a yard in Espoo, Finland. The results show that with the support of 3D point clouds, it is possible to support the monitoring of the local green infrastructure, including elements of smaller size in green areas and yards. However, point clouds generated by distinct means have differing abilities in conveying information on green elements, and canopy covers, for example, might hinder these abilities. Additionally, some green factor elements are more promising for 3D measurement-based monitoring than others, such as those with clear geometrical form. The results encourage the involvement of 3D measuring technologies for monitoring local urban green infrastructure (UGI), also of small scale.


2019 ◽  
Vol 93 (3) ◽  
pp. 344-358 ◽  
Author(s):  
Jarosław Socha ◽  
Paweł Hawryło ◽  
Marcin Pierzchalski ◽  
Krzysztof Stereńczak ◽  
Grzegorz Krok ◽  
...  

Abstract Reliable information concerning stand volume is fundamental to making strategic decisions in sustainable forest management. A variety of remotely sensed data and different inventory methods have been used for the estimation of forest biometric parameters. Particularly, airborne laser scanning (ALS) point clouds are widely used for the estimation of stand volume and forest biomass using an area-based approach (ABA) framework. This method relies on the reference measurements of field plots with the necessary prerequisite of a precise co-registration between ground reference plots and the corresponding ALS samples. In this research, the allometric area-based approach (AABA) is proposed in the context of stand volume estimation of Scots pine (Pinus sylvestris L.) stands. The proposed method does not require detailed information about the coordinates of the field plots. We applied Polish National Forest Inventory data from 9400 circular field plots (400 m2) to develop a plot level stand volume allometric model using two independent variables: top height (TH) and relative spacing index (RSI). The model was developed using the multiple linear regression method with a log–log transformation of variables. The hypothesis was that, the field measurements of TH and RSI could be replaced with corresponding ALS-derived metrics. It was assumed that TH could be represented by the maximum height of the ALS point cloud, while RSI can be calculated based on the number of tree crowns delineated within the ALS-derived canopy height model. Performance of the developed AABA model was compared with the semi-empirical ABASE (with two predictors: TH and RSI) and empirical ABAE (several point cloud metrics as predictors). The models were validated at the plot level using 315 forest management inventory plots (400 m2) and at the stand level using the complete field measurements from 42 Scots pine dominated forest stands in the Milicz forest district (Poland). The AABA model showed a comparable accuracy to the traditional ABA models with relatively high accuracy at the plot (relative root mean square error (RMSE) = 22.8 per cent; R2 = 0.63) and stand levels (RMSE = 17.8 per cent, R2 = 0.65). The proposed novel approach reduces time- and cost-consuming field work required for the classic ABA method, without a significant reduction in the accuracy of stand volume estimations. The AABA is potentially applicable in the context of forest management inventory without the necessity for field measurements at local scale. The transportability of the approach to other species and more complex stands needs to be explored in future studies.


Author(s):  
D. Costantino ◽  
M. G. Angelini ◽  
F. Settembrini

The paper presents a software dedicated to the elaboration of point clouds, called <i>Intelligent Cloud Viewer</i> (ICV), made in-house by AESEI software (Spin-Off of Politecnico di Bari), allowing to view point cloud of several tens of millions of points, also on of “no” very high performance systems. The elaborations are carried out on the whole point cloud and managed by means of the display only part of it in order to speed up rendering. It is designed for 64-bit Windows and is fully written in C ++ and integrates different specialized modules for computer graphics (Open Inventor by SGI, Silicon Graphics Inc), maths (BLAS, EIGEN), computational geometry (CGAL, <i>Computational Geometry Algorithms Library</i>), registration and advanced algorithms for point clouds (PCL, <i>Point Cloud Library</i>), advanced data structures (BOOST, <i>Basic Object Oriented Supporting Tools</i>), etc. ICV incorporates a number of features such as, for example, cropping, transformation and georeferencing, matching, registration, decimation, sections, distances calculation between clouds, etc. It has been tested on photographic and TLS (<i>Terrestrial Laser Scanner</i>) data, obtaining satisfactory results. The potentialities of the software have been tested by carrying out the photogrammetric survey of the Castel del Monte which was already available in previous laser scanner survey made from the ground by the same authors. For the aerophotogrammetric survey has been adopted a flight height of approximately 1000ft AGL (<i>Above Ground Level</i>) and, overall, have been acquired over 800 photos in just over 15 minutes, with a covering not less than 80%, the planned speed of about 90 knots.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1278 ◽  
Author(s):  
Yang Zhou ◽  
Shuhan Shen ◽  
Zhanyi Hu

In this paper, we put forward a new method for surface reconstruction from image-based point clouds. In particular, we introduce a new visibility model for each line of sight to preserve scene details without decreasing the noise filtering ability. To make the proposed method suitable for point clouds with heavy noise, we introduce a new likelihood energy term to the total energy of the binary labeling problem of Delaunay tetrahedra, and we give its s-t graph implementation. Besides, we further improve the performance of the proposed method with the dense visibility technique, which helps to keep the object edge sharp. The experimental result shows that the proposed method rivalled the state-of-the-art methods in terms of accuracy and completeness, and performed better with reference to detail preservation.


Sign in / Sign up

Export Citation Format

Share Document