scholarly journals Graphite: Graph-Induced Feature Extraction for Point Cloud Registration

Author(s):  
Mahdi Saleh ◽  
Shervin Dehghani ◽  
Benjamin Busam ◽  
Nassir Navab ◽  
Federico Tombari
Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5778
Author(s):  
Baifan Chen ◽  
Hong Chen ◽  
Baojun Song ◽  
Grace Gong

Three-dimensional point cloud registration (PCReg) has a wide range of applications in computer vision, 3D reconstruction and medical fields. Although numerous advances have been achieved in the field of point cloud registration in recent years, large-scale rigid transformation is a problem that most algorithms still cannot effectively handle. To solve this problem, we propose a point cloud registration method based on learning and transform-invariant features (TIF-Reg). Our algorithm includes four modules, which are the transform-invariant feature extraction module, deep feature embedding module, corresponding point generation module and decoupled singular value decomposition (SVD) module. In the transform-invariant feature extraction module, we design TIF in SE(3) (which means the 3D rigid transformation space) which contains a triangular feature and local density feature for points. It fully exploits the transformation invariance of point clouds, making the algorithm highly robust to rigid transformation. The deep feature embedding module embeds TIF into a high-dimension space using a deep neural network, further improving the expression ability of features. The corresponding point cloud is generated using an attention mechanism in the corresponding point generation module, and the final transformation for registration is calculated in the decoupled SVD module. In an experiment, we first train and evaluate the TIF-Reg method on the ModelNet40 dataset. The results show that our method keeps the root mean squared error (RMSE) of rotation within 0.5∘ and the RMSE of translation error close to 0 m, even when the rotation is up to [−180∘, 180∘] or the translation is up to [−20 m, 20 m]. We also test the generalization of our method on the TUM3D dataset using the model trained on Modelnet40. The results show that our method’s errors are close to the experimental results on Modelnet40, which verifies the good generalization ability of our method. All experiments prove that the proposed method is superior to state-of-the-art PCReg algorithms in terms of accuracy and complexity.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5288 ◽  
Author(s):  
Yanli Liu ◽  
Heng Zhang ◽  
Chao Huang

In this paper, we present a novel red-green-blue-depth simultaneous localization and mapping (RGB-D SLAM) algorithm based on cloud robotics, which combines RGB-D SLAM with the cloud robot and offloads the back-end process of the RGB-D SLAM algorithm to the cloud. This paper analyzes the front and back parts of the original RGB-D SLAM algorithm and improves the algorithm from three aspects: feature extraction, point cloud registration, and pose optimization. Experiments show the superiority of the improved algorithm. In addition, taking advantage of the cloud robotics, the RGB-D SLAM algorithm is combined with the cloud robot and the back-end part of the computationally intensive algorithm is offloaded to the cloud. Experimental validation is provided, which compares the cloud robotic-based RGB-D SLAM algorithm with the local RGB-D SLAM algorithm. The results of the experiments demonstrate the superiority of our framework. The combination of cloud robotics and RGB-D SLAM can not only improve the efficiency of SLAM but also reduce the robot’s price and size.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yongshan Liu ◽  
Dehan Kong ◽  
Dandan Zhao ◽  
Xiang Gong ◽  
Guichun Han

The existing registration algorithms suffer from low precision and slow speed when registering a large amount of point cloud data. In this paper, we propose a point cloud registration algorithm based on feature extraction and matching; the algorithm helps alleviate problems of precision and speed. In the rough registration stage, the algorithm extracts feature points based on the judgment of retention points and bumps, which improves the speed of feature point extraction. In the registration process, FPFH features and Hausdorff distance are used to search for corresponding point pairs, and the RANSAC algorithm is used to eliminate incorrect point pairs, thereby improving the accuracy of the corresponding relationship. In the precise registration phase, the algorithm uses an improved normal distribution transformation (INDT) algorithm. Experimental results show that given a large amount of point cloud data, this algorithm has advantages in both time and precision.


2021 ◽  
Vol 6 (24) ◽  
pp. 131-138
Author(s):  
Ahmad Firdaus Razali ◽  
Mohd Farid Mohd Ariff ◽  
Zulkepli Majid

Geoinformation is a surveying and mapping field where topography and details on the ground are spatially mapped. The point cloud is one of the data types that is used for measurement and visualisation of Earth features mapping. Point cloud could come from a different source such as terrestrial laser scanned or photogrammetry. The concepts of terrestrial laser scanning and photogrammetry surveying are elaborated in this paper. This paper also presents the method used for point cloud registration; Iterative Closest Point (ICP) and Feature Extraction and Matching (FEM) and the accuracy of laser scanned, and photogrammetric point cloud based on the previous experiments. Experimental analysis conducted in the previous study shows an impressive result on laser scanned point cloud with very mínimum errors compared to photogrammetric point cloud.


2018 ◽  
Vol 30 (4) ◽  
pp. 642
Author(s):  
Guichao Lin ◽  
Yunchao Tang ◽  
Xiangjun Zou ◽  
Qing Zhang ◽  
Xiaojie Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document