scholarly journals A molecular dynamics based digital twin for ultrafast laser material removal processes

2020 ◽  
Vol 108 (1-2) ◽  
pp. 413-426 ◽  
Author(s):  
Panagiotis Stavropoulos ◽  
Alexios Papacharalampopoulos ◽  
Lydia Athanasopoulou
2002 ◽  
Vol 124 (2) ◽  
pp. 475-480
Author(s):  
Xuanhui Lu ◽  
Y. Lawrence Yao ◽  
Kai Chen

Effects of improved beam quality of a low diffraction laser beam on laser material removal processes are experimentally investigated in a polymeric material. The experimental results are in agreement with theoretical predictions. The results show that the low diffraction beam has marked advantages over the Gaussian beam in ablation-dominated material removal processes in terms of larger depth and smaller taper at the same average power level.


2017 ◽  
Vol 1 (6) ◽  
Author(s):  
Alexander Miloshevsky ◽  
Mark C. Phillips ◽  
Sivanandan S. Harilal ◽  
Phillip Dressman ◽  
Gennady Miloshevsky

2011 ◽  
Vol 1319 ◽  
Author(s):  
Michael J. Abere ◽  
Ryan D. Murphy ◽  
Bianca Jackson ◽  
Gerard Mourou ◽  
Michel Menu ◽  
...  

ABSTRACTAn ultrafast laser irradiation method for the removal of corrosion from Daguerreotypes without detrimentally affecting image quality has been developed. Corrosion products such as silver oxide and silver sulfide may be removed by chemical cleaning but these reactions are hard to control and are often damaging to the underlying silver, ruining the image. The Ti:Sapphire 150 fs laser pulses used in this study are focused to a beam diameter of 60 μm and are normally incident to the Daguerreotype. It was found that the corrosion layer has a lower material removal threshold than silver allowing for removal of corrosion with minimal removal of vital information contained in the silver substrate.


2019 ◽  
Vol 2 (3) ◽  
pp. 634-641
Author(s):  
Hakan Gökçe ◽  
Ramazan Yeşilay ◽  
Necati Uçak ◽  
Ali Teke ◽  
Adem Çiçek

In material removal processes, determination of optimal machining strategy is a key factor to increase productivity. This situation is gaining more importance when machining components with complex geometry. The current practice in the determination of machining strategy mostly depends on the experience of the machine operator. However, poorly designed machining processes lead to time-consuming and costly solutions. Therefore, the improvement of machining processes plays a vital role in terms of machining costs. In this study, the machining process of a boom-body connector (GGG40) of a backhoe loader was improved. Improvements of toolpaths and cutting conditions of 22 different material removal processes were checked through a CAM software. According to the simulation results, the process plan was rearranged. Besides, some enhancements in casting model were conducted to decrease in the number of machining operations. When compared to current practice, a reduction of 55% in machining time was achieved.


Sign in / Sign up

Export Citation Format

Share Document