silver substrate
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhiyou Wang ◽  
Maojin Wang

In this work, we reported a wireless network composed of silver film-based graphene oxide-fluorescence resonance energy transfer (GO-FRET) lysozyme aptasensor nodes. At the sensor node level, we optimized silver substrate structure, concentrations of the aptamers, and graphene oxide and tested lysozyme detection performance with a model analyte. At the network level, we analyzed the complexity and transmission success rate using fractal measurements. We implemented the wireless network composed of the aptasensor with a portable Wi-Fi fluorescent reader. Transmission success rate testing results show that an increase in node hops can promote the rate of transmission success dramatically. When the hop count is larger than 6, the rate of transmission success can reach more than 90% if the transmission failure probability and sleep probability are 0.1 and 0.5, respectively.


Author(s):  
Duy Quang Dao ◽  
Thi Chinh Ngo ◽  
Thi Thuy Huong Le ◽  
Quang Thang Trinh ◽  
Thi Le Anh Nguyen ◽  
...  

2021 ◽  
Author(s):  
Ali Elrashidi

Abstract In this work, an ultra-thin plasmonic metamaterial nanostructure absorber is simulated using finite difference time domain method in the visible and near infrared regions. A metamaterial, metal-insulator-metal, of a periodic structure of titanium-silica cap mounted on a top of a silver substrate covered by glass substrate is introduced in this paper. The glass substrate is used to enhance the absorption bandwidth by 276%, from 510 nm to 1410 nm. An almost perfect absorber, over 90% of the incident light, has been obtained for wavelengths from 440 nm to 1850 nm which produces an absorption bandwidth of 1410 nm. The square base unit cell dimensions of the silver substrate and of the cap are simulated and found as 250 nm and 200 nm consequently. The effect of using different materials for the top of the cap and for the insulator are also tested. The considered materials are titanium, nickel, silver, aluminum, and gold; however, the insulators are silica, quartz, vanadium dioxide, methyl methacrylate, and aluminium dioxide. In addition, aluminium, silver, copper, and gold are then simulated as a substrate metal. The optimum structure, which produce the maximum absorber bandwidth, 1410 nm, with a higher absorption, over 90%, is Glass-Ti-SiO2-Ag. Finally, the absorption bandwidth is calculated using different polarization angle, from 100 to 700 with a step100.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 860
Author(s):  
Cristina Gellini ◽  
Marina Macchiagodena ◽  
Marco Pagliai

The knowledge of the adsorption geometry of an analyte on a metal substrate employed in surface enhanced Raman scattering (SERS) spectroscopy is important information for the correct interpretation of experimental data. The adsorption geometry of alizarin on silver nanoparticles was studied through ab initio calculations in the framework of density functional theory (DFT) by modeling alizarin taking into account all the different charged species present in solution as a function of pH. The calculations allowed a faithful reproduction of the measured SERS spectra and to elucidate the adsorption geometry of this dye on the silver substrate.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Zhendong Yan ◽  
Chaojun Tang ◽  
Guohua Wu ◽  
Yumei Tang ◽  
Ping Gu ◽  
...  

Achieving perfect electromagnetic wave absorption with a sub-nanometer bandwidth is challenging, which, however, is desired for high-performance refractive-index sensing. In this work, we theoretically study metasurfaces for sensing applications based on an ultra-narrow band perfect absorption in the infrared region, whose full width at half maximum (FWHM) is only 1.74 nm. The studied metasurfaces are composed of a periodic array of cross-shaped holes in a silver substrate. The ultra-narrow band perfect absorption is related to a hybrid mode, whose physical mechanism is revealed by using a coupling model of two oscillators. The hybrid mode results from the strong coupling between the magnetic resonances in individual cross-shaped holes and the surface plasmon polaritons on the top surface of the silver substrate. Two conventional parameters, sensitivity (S) and figure of merit (FOM), are used to estimate the sensing performance, which are 1317 nm/RIU and 756, respectively. Such high-performance parameters suggest great potential for the application of label-free biosensing.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1664 ◽  
Author(s):  
Huan Chen ◽  
Di An ◽  
Xiaopeng Zhao

A reflective metasurface model composed of silver dendritic units is designed in this study. The integral property of this metasurface, which consists of an upper layer of dendritic structures, a silica spacer, and a bottom silver substrate was demonstrated at visible wavelengths. The simulation results revealed that the metasurface can perform integral operation in the yellow and red bands; this can be easily generalized to the infrared and communication bands by scaling the transverse dimensions of this metasurface. A dendritic metasurface sample responding to red light was prepared via the bottom-up electrochemical deposition method. The integral operation property of the sample was verified experimentally. This dendritic metasurface, which can perform integral operation in visible light, can be used for big data processing technology, real-time signal processing, and beam shaping, and provides a new method for miniaturized and integrated all-optical signal processing systems.


Crystals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Zhaofeng Liang ◽  
Qiwei Tian ◽  
Huan Zhang ◽  
Jinping Hu ◽  
Pimo He ◽  
...  

Self-assembled strategy has been proven to be a promising vista in constructing organized low-dimensional nanostructures with molecular precision and versatile functionalities on solid surfaces. Herein, we investigate by a combination of scanning tunneling microscopy (STM) and dispersion-corrected density functional theory (DFT), the adsorption of tetracene molecules on the silver substrate and the mechanism mediating the self-assembly on Ag(110). As expected, ordered domain is formed on Ag(110) after adsorption with adjacent molecules being imaged with alternating bright or dim pattern regularly. While such behavior has been assigned previously to the difference of molecular adsorption height, herein, it is possible to investigate essentially the mechanism leading to the periodic alternation of brightness and dimness for tetracene adsorbed on Ag(110) thanks to the consideration of Van der Waals (vdW) dispersion force. It is demonstrated that the adsorption height in fact is same for both bright and dim molecules, while the adsorption site and the corresponding interfacial charge transfer play an important role in the formation of such pattern. Our report reveals that vdW dispersion interaction is crucial to appropriately describe the adsorption of tetracene on the silver substrate, and the formation of delicate molecular architectures on metal surfaces might also offers a promising approach towards molecular electronics.


Sign in / Sign up

Export Citation Format

Share Document