Active chatter control in turning processes with input constraint

2020 ◽  
Vol 108 (11-12) ◽  
pp. 3737-3751 ◽  
Author(s):  
Haifeng Ma ◽  
Jianhua Wu ◽  
Zhenhua Xiong
2017 ◽  
Vol 30 (6) ◽  
pp. 04017073 ◽  
Author(s):  
Jing-guang Sun ◽  
Shen-min Song ◽  
Guan-qun Wu

1992 ◽  
Vol 114 (2) ◽  
pp. 146-157 ◽  
Author(s):  
T. Delio ◽  
J. Tlusty ◽  
S. Smith

This paper compares various sensors and shows that a microphone is an excellent sensor to be used for chatter detection and control. Comparisons are made between the microphone and some other common sensors (dynamometers, displacement probes, and accelerometers) regarding sensing of unstable milling. It is shown that the signal from the microphone provides a competitive, and in many instances a superior, signal tht can be utilized to identify chatter. Using time domain milling simulations of low-radial-immersion, low-feed, finishing operations it is shown that for these cuts (especially at relatively high speeds) chatter is not adequately reflected in the force signal because of the short contact time, but that it is clearly seen in the displacement signal. Using the dynamics of existing production milling machines it is shown how the microphone is more suitable to chatter detection than other remotely placed displacement sensors, especially in cases that involve flexible tooling and workpieces. Aspects important for practical implementation of a microphone in an industrial setting are discussed. Limitations of the microphone are addressed, such as directional considerations, frequency response, and environmental sensitivity (i.e., workspace enclosure, room size, etc). To compensate for expected unwanted noises, commonly known directionalization techniques such as isolation, collection, and intensity methods are suggested to improve the ability of the microphone to identify chatter by reducing or eliminating background and extraneous noises. Using frequency domain processing and the deterministic frequency domain chatter theory, a microphone is shown to provide a proper and consistent signal for reliable chatter detection and control. Cutting test records for an operating, chatter recognition and control system, using a microphone, are presented; and numerous examples of chatter control are listed which include full and partial immersion, face-and end-milling cuts.


1972 ◽  
Vol 94 (1) ◽  
pp. 5-10 ◽  
Author(s):  
C. Nachtigal

The analysis of machine tool chatter from frequency domain considerations is generally accepted as a valid representation of the regenerative chatter phenomenon. However, active control of regenerative chatter is still in its embryonic stage. It was established in reference [2] that a measurement of the cutting force could be effectively used in conjunction with a controller and a tool position servo system to increase the stability of an engine lathe and to improve its transient response. This paper presents the design basis for such a system, including both analytical and experimental considerations. The design procedure stems from a real part stability criterion based on the work by Merritt [1]. Because of the unknown variability in the dynamics of a machine tool system, the controller parameters were chosen to accomodate some mismatch between structure and tool servo dynamics. Experimental tests to determine the stability zone of the controlled machine tool system qualitatively confirmed the analytical design results. The experimental results were consistent in that the transient response tests confirmed the frequency domain stability tests. It was also demonstrated experimentally that the equivalent static stiffness of a flexible work-piece system could be substantially increased.


Sign in / Sign up

Export Citation Format

Share Document