Analysis of asymmetrical rolling of strip considering two deformation region types

2020 ◽  
Vol 110 (9-10) ◽  
pp. 2767-2785
Author(s):  
Xiangkun Sun ◽  
Xianghua Liu ◽  
Ji Wang ◽  
Junlong Qi
Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Hiroki Taniyama ◽  
Eiji Iwase

We designed a kirigami structure with a particular shape at both ends to provide a large uniform deformation region when stretched. When a kirigami structure is stretched, non-deformation regions, where the regions’ cuts do not open, and non-uniform deformation regions, where the regions’ cuts are not uniformly deformed, are produced. The extent of the non-deformation and non-uniform deformation regions increases in proportion to the number of cut cycles in the width direction nw this reduces the percentage of the uniform deformation region. We propose a method that increases the uniform deformation region in a kirigami structure by deforming the shape of the ends from a rectangle to a trapezoid when stretched. The proposed kirigami structure has separation lines at both ends that separate cuts in the width direction, and the position of contacts at both ends are moved to the center. The proposed kirigami structure has a large uniform deformation region, even when nw is large, as evidenced by calculating the area of open cuts under stretching. The product of our study realizes a stretchable electro device with a large area, which maintains the position of evenly mounted functional elements when stretched.


2009 ◽  
Vol 2 (S1) ◽  
pp. 891-894 ◽  
Author(s):  
Fábio J. P. Simões ◽  
Ricardo J. Alves de Sousa ◽  
José J. A. Grácio ◽  
Frédéric Barlat ◽  
Jeong Whan Yoon

2006 ◽  
Vol 116-117 ◽  
pp. 417-420 ◽  
Author(s):  
Moo Young Huh ◽  
Hyung Gu Kang ◽  
C.K. Kang

Asymmetrical rolling was performed by rolling AA 1050 sheets with different velocities of upper and lower rolls. In order to study the effect of roll gap geometry on the evolution of strain states and textures during asymmetrical rolling, the reduction per rolling pass was varied. After asymmetrical rolling, the outer thickness layers depicted shear textures and the center thickness layers displayed a random texture. With decreasing reduction per an asymmetrical rolling pass, the thickness layers depicting shear textures increases. The strain states associated with asymmetrical rolling were investigated by simulations with the finite element method (FEM).


1976 ◽  
Vol 98 (2) ◽  
pp. 438-445 ◽  
Author(s):  
B. Avitzur ◽  
W. C. Hahn ◽  
M. Mori

The upper bound approach is used to analyze combined backward-forward extrusion. The deformation region is divided into five zones separated by planer and cylindrical surfaces of velocity discontinuities. The internal power of deformation and shear and friction losses are computed individually and summed. The pseudo-independent process parameter is the backward rate of flow with respect to which the total power of deformation is optimized. The optimal backward rate of flow is assumed to be the actual one. Thus, the backward rate of flow becomes a dependent parameter to be studied through this analysis. Conditions covering backward rates of flow from zero to maximum are demonstrated graphically. Examples are given for which combined flow results and for which either only forward flow or only backward flow occur.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 891 ◽  
Author(s):  
I Widiantara ◽  
Hae Yang ◽  
Muhammad Kamil ◽  
Dong Yoon ◽  
Young Ko

The work looked into the grain refinement process of Mg alloy during asymmetrical rolling with a focus on the role of twin. The present sample was deformed at ambient temperature by single operation with the height reduction of 50% at the roll speed ratio of 1:4 for the upper and lower rolls having the same dimension. From the electron backscatter diffraction analysis in the surface region where intense shear strain was imparted, a number of { 10 1 ¯ 2 } extension twins with a width of ~1 µm were detected clearly in most of the deformed grains. Moreover, the average misorientation angle of the deformed grains in the top region was found to be ~32°, which was two times higher than that in the center area where the extension twin was detected rarely. As a result, the microstructure in the top region was refined significantly down to be ~1.1 µm with an aid of twin activities that would be discussed in this study.


Sign in / Sign up

Export Citation Format

Share Document