scholarly journals A new method for choosing between ball-end cutter and toroidal cutter when machining free-form surfaces

2020 ◽  
Vol 111 (5-6) ◽  
pp. 1425-1443
Author(s):  
Mahfoud Herraz ◽  
Jean-Max Redonnet ◽  
Marcel Mongeau ◽  
Mohammed Sbihi
Author(s):  
Xiang Wu ◽  
Wansheng Zhao ◽  
R. Du

Shrouded turbine blisk is an important component for liquid-propellant rocket engine, airplane engine and some other high-power turbine machines. It is made from high-temperature alloy (e.g., nickel-base alloy and titanium alloy) and hence, is difficult to machine. In addition, its geometrical shape is complicated involving many semi-enclosed, twisted, free-form surfaces. In order to ensure the best performance, its dimension accuracy is very demanding. For the moment, an effective way to manufacture shrouded turbine blisk is Electrical Discharge Machining (EDM) using form tools (form electrodes). However, owing to its complicated geometry, existing commercial CAM systems cannot generate the interference-free tool path for it. In this paper, a new tool path generation method is presented. The new method is base on the quadratic programming and CNC multi-axis simultaneous control. It generates tool path in two steps. First, a feasible zone is generated by coarse search, which gives an elementary path for form tool feed. Then, within the feasible zone the actual NC tool path is found by fine search through CNC multi-axis simultaneous control simulation. In practice, a form tool follows the interference-free tool path moving into the twisted passages of blisk for machining, while the blisk is turning by a CNC turntable. The new method is validated experimentally. Compared to the existing methods, it can obtain high machining efficiency and high machining accuracy. Experimental results indicate that the new method is accurate. This new method can also be applied to many other machining applications involving complicated geometrical shape.


2017 ◽  
Vol 728 ◽  
pp. 48-53 ◽  
Author(s):  
Hendriko Hendriko

This paper presents a new method to calculate the feed scallop height for a toroidal cutter during a free-form surface machining in multi-axis milling. The proposed method is an extended analytical boundary method to define the cut geometry during a free-form surface milling. The algorithm was developed by taken into account the existence of inclination angle. The proposed method was successfully implemented to calculate the scallop for two model parts with different surface profiles. The accuracy was verified by comparing the scallop height calculated using the proposed method with those measured using Siemens-NX. The results proved that the proposed method was accurate


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2667 ◽  
Author(s):  
Marek Magdziak

The article presents the method of selecting scanning lines along which coordinate measurements, performed by using, e.g., a coordinate measuring machine working in the single point probing mode, of free-form surfaces of measured workpieces may be conducted. Additionally, the proposed method supports the user of a coordinate measuring system during defining the number of measurement points distributed along selected scanning lines, thus deciding on the final distribution of measurement points on a measured surface of a product. The proposed method enables distributing measurement points in the parts of a measured product characterized by the worst quality of manufacturing. Moreover, the new method is very automated, therefore it affects the increase in the efficiency of coordinate measurements. The effect of using the new method is the non-uniform distribution of measurement points located on free-form surfaces. The presented algorithm takes into account the lengths of selected cross-sections of a measured curvilinear surface of an object, its geometrical complexity and the accuracy of the probe radius correction process. The decision regarding the number of measurement points is made on the basis of the accuracy analysis of the calculations of the corrected measurement points obtained during the probe radius correction process and the accuracy of the substitute model representing a measured curvilinear surface. Two methods of the correction process were used. The accuracy of the applied methods of the probe radius compensation process was estimated on the basis of the deviations calculated between corrected measurement points and scanning lines. The selection of scanning lines and the number of measurement points was realized by using the expert system based on the fuzzy logic. The paper presents the results of both simulation and experimental investigations. The numerical calculations were performed for two selected free-form surfaces. The verification of the developed algorithm was carried out during experimental investigations based on a measurement of a selected free-form surface. The conducted research was aimed at verifying the correctness of the distribution of measurement points generated using the proposed method. In the case of real measurements, measurement points should be located in the places of surfaces of products characterized by the largest deviations of manufacturing. The results of the conducted investigations confirm the usefulness of the developed algorithm for defining the distribution of measurement points on curvilinear surfaces in the coordinate measuring technique. Moreover, the way of implementation of the developed method of the distribution of measurement points in selected commercial measurement software is presented, thus enabling the use of the new method in the industry.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5346 ◽  
Author(s):  
Marek Magdziak

The article presents a new method for determining the distribution of measurement points, which can be used in the case of contact coordinate measurements of curvilinear surfaces of products. The developed method is based on multi-criteria decision analysis. In the case of the new method, the selection of the distribution of measurement points on free-form surfaces is carried out based on the analysis of five different criteria. The selection of the best model of the distribution of measurement points results from the accuracy of coordinate measurements, the time needed to complete measurement tasks, the number of measurement points, the accuracy of the substitute surface representing the measured free-form surface and the area where measurement points are located. The purpose of using the developed method of the distribution of measurement points is to increase the performance of coordinate measurements primarily by increasing the automation of strategy planning of measurements of curvilinear surfaces and improving the accuracy of measurements of free-form surfaces of products. The new method takes into account various aspects of coordinate measurements to determine the final model of the distribution of measurement points on measured surfaces of products, thereby increasing the probability of the proper determination (i.e., identifying the highest deviations of a product) of the location of measurement points on the surfaces of a measured object. The paper presents an example of the application of the created method, which concerns the selection of the best model of the distribution of measurement points on a selected free-form surface. This example is based on, among others, the results of experimental investigations, which were carried out by using the ACCURA II coordinate measuring machine equipped with the VAST XXT measuring probe and the Calypso measurement software. The results of investigations indicate a significant reduction in time of coordinate measurements of products when using the new method for determining the distribution of measurement points. However, shortening the time of coordinate measurements does not reduce their accuracy.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mehwish Bari ◽  
Ghulam Mustafa ◽  
Abdul Ghaffar ◽  
Kottakkaran Sooppy Nisar ◽  
Dumitru Baleanu

AbstractSubdivision schemes (SSs) have been the heart of computer-aided geometric design almost from its origin, and several unifications of SSs have been established. SSs are commonly used in computer graphics, and several ways were discovered to connect smooth curves/surfaces generated by SSs to applied geometry. To construct the link between nonstationary SSs and applied geometry, in this paper, we unify the interpolating nonstationary subdivision scheme (INSS) with a tension control parameter, which is considered as a generalization of 4-point binary nonstationary SSs. The proposed scheme produces a limit surface having $C^{1}$ C 1 smoothness. It generates circular images, spirals, or parts of conics, which are important requirements for practical applications in computer graphics and geometric modeling. We also establish the rules for arbitrary topology for extraordinary vertices (valence ≥3). The well-known subdivision Kobbelt scheme (Kobbelt in Comput. Graph. Forum 15(3):409–420, 1996) is a particular case. We can visualize the performance of the unified scheme by taking different values of the tension parameter. It provides an exact reproduction of parametric surfaces and is used in the processing of free-form surfaces in engineering.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Diego Andrade ◽  
Ved Vyas ◽  
Kenji Shimada

While modern computer aided design (CAD) systems currently offer tools for generating simple patterns, such as uniformly spaced rectangular or radial patterns, these tools are limited in several ways: (1) They cannot be applied to free-form geometries used in industrial design, (2) patterning of these features happens within a single working plane and is not applicable to highly curved surfaces, and (3) created features lack anisotropy and spatial variations, such as changes in the size and orientation of geometric features within a given region. In this paper, we introduce a novel approach for creating anisotropic patterns of geometric features on free-form surfaces. Complex patterns are generated automatically, such that they conform to the boundary of any specified target region. Furthermore, user input of a small number of geometric features (called “seed features”) of desired size and orientation in preferred locations could be specified within the target domain. These geometric seed features are then transformed into tensors and used as boundary conditions to generate a Riemannian metric tensor field. A form of Laplace's heat equation is used to produce the field over the target domain, subject to specified boundary conditions. The field represents the anisotropic pattern of geometric features. This procedure is implemented as an add-on for a commercial CAD package to add geometric features to a target region of a three-dimensional model using two set operations: union and subtraction. This method facilitates the creation of a complex pattern of hundreds of geometric features in less than 5 min. All the features are accessible from the CAD system, and if required, they are manipulable individually by the user.


1992 ◽  
Vol 58 (11) ◽  
pp. 1886-1892
Author(s):  
Takashi MIYOSHI ◽  
Hiroshi AOKI ◽  
Katsumasa SAITO
Keyword(s):  

Author(s):  
Vincent Cheutet ◽  
Jean-Philippe Pernot ◽  
Jean-Claude Leon ◽  
Bianca Falcidieno ◽  
Franca Giannini

To limit low-level manipulations of free-form surfaces, the concept of Fully Free Form Deformation Features (δ-F4) have been introduced. They correspond to shapes obtained by deformation of a surface area according to specified geometric constraints. In our work, we mainly focused on those features aimed at enforcing the visual effect of the so-called character lines, extensively used by designers to specify the shape of an object. Therefore, in the proposed approach, 3D lines are used to drive surface deformation over specified areas. Depending on the wished shape and reflection light effects, the insertion of character lines may generate surface tangency discontinuities. In CAD systems, such kind of discontinuities is generally created by a decomposition of the initial surface into several patches. This process can be tedious and very complex, depending on the shape of the deformation area and the desired surface continuity. Here, a method is proposed to create discontinuities on a surface, using the trimming properties of surfaces. The corresponding deformation features produce the resulting surface in a single modification step and handle simultaneously more constraints than current CAD systems. The principle of the proposed approach is based on arbitrary shaped discontinuities in the parameter domain of the surface to allow the surface exhibiting geometric discontinuities at user-prescribed points or along lines. The proposed approach is illustrated with examples obtained using our prototype software.


Sign in / Sign up

Export Citation Format

Share Document