Precision electrochemical machining of tungsten micro-rods using wire electrochemical turning method

2020 ◽  
Vol 111 (1-2) ◽  
pp. 295-307
Author(s):  
Wei Han ◽  
Masanori Kunieda
2009 ◽  
Vol 626-627 ◽  
pp. 351-356 ◽  
Author(s):  
Min Kang ◽  
Yong Yang ◽  
X.Q. Fu

A preliminary study of Numerical Controlled Electrochemical Turning (NC-ECT) technology was presented in this paper. NC-ECT is suitable for machining revolving workpieces which are made of difficult-to-cut materials or have low rigidity, and it is difficult or expensive for machining these workpieces by use of traditional turning or traditional Electrochemical Machining (ECM) method. To carry out the study, an experimental setup was developed on the basis of a common lathe, and a kind of inner-spraying cathode with rectangle section outlet was designed according to the process of machining cylindrical surface. First, the NC-ECT method was simply described. Then, considering the structure of the cathode and the process of machining, the method for calculating the inter-electrode gap in machining the cylindrical surface was given. Finally, the experiments of machining the cylindrical surface were carried out. Experiments showed that the calculated inter-electrode gaps are well consistent with the actual value of the machining process, which decreases with the increase of the rotational speed of workpiece and increases almost linearly with the increase of the working voltage. Experiments also showed that the inter-electrode gap keeps a certain relationship with the working current, the inter-electrode gap can be controlled according to working current in the machining process.


Author(s):  
Ahmed Maged ◽  
Salah Haridy ◽  
Mohammad Shamsuzzaman ◽  
Imad Alsyouf ◽  
Roubi Zaied

The response surface methodology (RSM) and Shewhart control charts have been widely used in manufacturing to reduce variation, improve quality and optimize the output. This article proposes an application of individuals & moving range chart (I&MR) and RSM in electrochemical machining. The Shewhart-type I&MR control chart and RSM are combined together in an effective way to successfully guarantee the statistical control of the surface roughness (Ra) of the items produced by wire electrochemical turning, and meanwhile optimize Ra by exploring the optimal values of the machining parameters including applied voltage, wire feed rate, wire diameter, rotational speed and overlap distance. The conducted experiments reveal that the optimal values of the aforementioned factors are 23.67, 0.5, 0.2, 900 and 0.02, respectively.  A second-order regression model is also developed to predict the output (Ra) at different combinations of the input parameters. The developed regression model can predict the output values with a determination coefficient (R2) of 96.9%. The proposed combined scheme of Shewhart charts and RSM can be employed in other manufacturing processes and even in different service sectors to efficiently enhance the performance and reduce the cost.


2020 ◽  
Vol 54 (135) ◽  
pp. 2
Author(s):  
Sicong WANG ◽  
Akihiro GOTO ◽  
Yohei KOTSUCHIBASHI ◽  
Atsushi NAKATA ◽  
Junda CHEN ◽  
...  

2020 ◽  
pp. 60-64
Author(s):  
Yu.A. Morgunov ◽  
B.P. Saushkin ◽  
N.V. Homyakova

The achieved accuracy in the electrochemical performance of understatement with a depth of 18 mcm with a tolerance of 4.5 mcm in a flow-through interelectrode channel is studied. The primary error of the size. The allowed absolute and relative errors of processing mode parameters are set. Keywords: UNDERSTATEMENT, ELECTROCHEMICAL MACHINING, ERROR, PRECISION SIZE, TOLERANCE, PROCESSING MODE. [email protected]


Sign in / Sign up

Export Citation Format

Share Document