Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding

Author(s):  
Weicheng Guo ◽  
Chongjun Wu ◽  
Zishan Ding ◽  
Qinzhi Zhou
Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4121
Author(s):  
Shaoqian Pei ◽  
Hui Qin ◽  
Liqiang Yao ◽  
Yongqi Liu ◽  
Chao Wang ◽  
...  

Short-term load forecasting (STLF) plays an important role in the economic dispatch of power systems. Obtaining accurate short-term load can greatly improve the safety and economy of a power grid operation. In recent years, a large number of short-term load forecasting methods have been proposed. However, how to select the optimal feature set and accurately predict multi-step ahead short-term load still faces huge challenges. In this paper, a hybrid feature selection method is proposed, an Improved Long Short-Term Memory network (ILSTM) is applied to predict multi-step ahead load. This method firstly takes the influence of temperature, humidity, dew point, and date type on the load into consideration. Furthermore, the maximum information coefficient is used for the preliminary screening of historical load, and Max-Relevance and Min-Redundancy (mRMR) is employed for further feature selection. Finally, the selected feature set is considered as input of the model to perform multi-step ahead short-term load prediction by the Improved Long Short-Term Memory network. In order to verify the performance of the proposed model, two categories of contrast methods are applied: (1) comparing the model with hybrid feature selection and the model which does not adopt hybrid feature selection; (2) comparing different models including Long Short-Term Memory network (LSTM), Gated Recurrent Unit (GRU), and Support Vector Regression (SVR) using hybrid feature selection. The result of the experiments, which were developed during four periods in the Hubei Province, China, show that hybrid feature selection can improve the prediction accuracy of the model, and the proposed model can accurately predict the multi-step ahead load.


2021 ◽  
Vol 9 (6) ◽  
pp. 651
Author(s):  
Yan Yan ◽  
Hongyan Xing

In order for the detection ability of floating small targets in sea clutter to be improved, on the basis of the complete ensemble empirical mode decomposition (CEEMD) algorithm, the high-frequency parts and low-frequency parts are determined by the energy proportion of the intrinsic mode function (IMF); the high-frequency part is denoised by wavelet packet transform (WPT), whereas the denoised high-frequency IMFs and low-frequency IMFs reconstruct the pure sea clutter signal together. According to the chaotic characteristics of sea clutter, we proposed an adaptive training timesteps strategy. The training timesteps of network were determined by the width of embedded window, and the chaotic long short-term memory network detection was designed. The sea clutter signals after denoising were predicted by chaotic long short-term memory (LSTM) network, and small target signals were detected from the prediction errors. The experimental results showed that the CEEMD-WPT algorithm was consistent with the target distribution characteristics of sea clutter, and the denoising performance was improved by 33.6% on average. The proposed chaotic long- and short-term memory network, which determines the training step length according to the width of embedded window, is a new detection method that can accurately detect small targets submerged in the background of sea clutter.


Sign in / Sign up

Export Citation Format

Share Document