Optimization of cutting parameters in double-excitation ultrasonic elliptical vibration cutting of 630 stainless steel

Author(s):  
Guosheng Geng ◽  
Yang Wang ◽  
Liang Zhang ◽  
Maohua Xiao
2011 ◽  
Vol 55-57 ◽  
pp. 327-331 ◽  
Author(s):  
Cheng Mao Zhang ◽  
Cheng Li ◽  
De Yuan Zhang

Hardened stainless steels are materials widely used in the field of aviation and spaceflight. Machining of this materials with conventional cutting (CC) method is a real challenge compared to other difficult-to-cut materials. Ultrasonic elliptical vibration cutting (UEVC) method is a novel and non-conventional cutting technique which has been successfully applied to machine such intractable materials for the last decade. However, few studies have been conducted on the cutting force in ultrasonic elliptical vibration cutting of hardened materials. This paper presents an experimental study on cutting force in UEVC of hardened stainless steels using cemented carbide tools. Experiments have been carried out to investigate the effect of cutting parameters in the UEVC method in terms of cutting force, while cutting hardened stainless steels. The tests have revealed that the average thrust force,principal force and feed force drop to 3%,10% and 90% of CC value for UEVC of hardened stainless steels. The ratio between the CC force and the UEVC force decrease with the increase of DOC and cutting speed.


Author(s):  
Xinquan Zhang ◽  
Chandra Nath ◽  
A. Senthil Kumar ◽  
Mustafizur Rahman ◽  
Kui Liu

Ultraprecision machining of hardened steel by the conventional cutting (CC) technique using diamond tools is impossible because of highly chemical affinity between carbon and iron at higher temperature during machining. An intermittently cutting technique, namely, ultrasonic elliptical vibration cutting (UEVC) technique has been being applied for high-quality machining of various difficult-to-cut materials for the last decade. However, study on machining of hardened stainless steel using polycrystalline diamond (PCD) tools applying this cutting technique has not been reported yet. This study presents an experimental study on UEVC of hardened stainless steel (a typical Stavax of 49 HRC) using PCD tools. Face cutting experiments have been carried out to investigate the effects of conventional machining parameters: depth of cut, feed rate, and spindle rotational speed on the performance parameters such as cutting force, tool flank wear, surface roughness and chip formation. A minimum surface roughness Ra value of 10 nm, measured by a stylus profilometer, was achieved. It can be concluded that, while applying UEVC technique, the inexpensive PCD tools compared to the single crystal diamond tools can be effectively applied to obtain optical surface for producing precise dies and molds from hardened steel.


Author(s):  
Sen Yin ◽  
Zhigang Dong ◽  
Yan Bao ◽  
Renke Kang ◽  
Wenhao Du ◽  
...  

Abstract Ultrasonic elliptical vibration cutting (UEVC) technique, as an advanced cutting method, has been successfully applied to machine difficult-to-cut materials for the last decade. In this study, the mechanism of the elliptical vibration locus caused by the “asymmetric structure” of the horn was analyzed theoretically firstly, and the corresponding relationship between the degree of asymmetry and the elliptical vibration locus was determined based on finite element method (FEM). Then an efficient single-excitation UEVC device with “asymmetric structure” was developed and optimized. The resonant frequency of the device was 40.8 kHz, and the amplitude reached 12.4 µm, which effectively broke the limitation of cutting speed in UEVC. Finally, the UEVC device's performance was tested, and the advantages in improving the tungsten alloy surface quality and reducing diamond cutting tool wear validated the technical capability and principle of the proposed device.


2018 ◽  
Vol 12 (4) ◽  
pp. 573-581 ◽  
Author(s):  
Hiroshi Saito ◽  
Hongjin Jung ◽  
Eiji Shamoto ◽  
Shinya Suganuma ◽  
Fumihiro Itoigawa ◽  
...  

Low-cost mirror surface machining of die steel is proposed in this research by applying elliptical vibration cutting with diamond-coated tools sharpened by pulse laser grinding (PLG). It is well known that conventional diamond cutting cannot be applied to die steel owing to rapid tool wear. Several attempts have been reported to prevent rapid tool wear, such as using ultrasonic elliptical vibration cutting. The ultrasonic elliptical vibration cutting developed by the authors to achieve mirror surface finish on die steel and prevent rapid wear is widely used in the industry. However, high-cost single-crystalline diamond tools that are finished using a time-consuming lapping process are required to obtain mirror surfaces. The authors, meanwhile, have recently developed the PLG process to efficiently sharpen the cutting edges of hard tool materials such as cubic boron nitride. Therefore, a practical mirror surface machining method for die steel is proposed in this research, namely elliptical vibration cutting with low-cost diamond-coated tools sharpened by the efficient PLG process. The results of the machining experiments confirmed that practical mirror surface machining of die steel can be achieved by the proposed method.


2011 ◽  
Vol 467-469 ◽  
pp. 236-240 ◽  
Author(s):  
Wen Li ◽  
De Yuan Zhang

Based on analysis of the micro-surface and kinematical formulas of elliptical vibration cutting(EVC), the paper presents that frequency and amplitude of vibration parameter affect surface roughness, forming accuracy and machining efficiency of weak rigidity workpiece: increase vibration frequency are result in lower vibration cutting duty cycle , lower cutting force, advancer critical speed, so advance forming accuracy and machining efficiency; decrease amplitude are result in reduce the height of vibration ripples in cutting direction , so improve surface roughness. Experiences of cutting the weak rigidity workpiece by the designed double bending hybrid vibration high transducer, verified that the high frequency elliptical vibration cutting are proved more conducive to machining weak rigidity workpiece.


Sign in / Sign up

Export Citation Format

Share Document