Microstructure, mechanical, and corrosion properties of electron beam-welded commercially pure titanium after laser shock peening

Author(s):  
Angshuman Chattopadhyay ◽  
Gopinath Muvvala ◽  
Sagar Sarkar ◽  
Vikranth Racherla ◽  
Ashish Kumar Nath
Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


Author(s):  
Benxin Wu ◽  
Yung C. Shin

Laser shock peening (LSP) is emerging as a competitive alternative technology to classical treatments to improve fatigue and corrosion properties of metals for a variety of important applications. LSP is often performed under a water confinement regime (WCR), which involves several complicated physical processes. A complete and self-closed LSP model is presented in this paper, which requires a sequential application of three sub models: a breakdown-plasma model, a confined-plasma model, and a finite element mechanics model. Simulation results are compared with experimental data in many aspects under a variety of typical LSP conditions, and good agreements are obtained.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Viorel Malinovschi ◽  
Alexandru Horia Marin ◽  
Catalin Ducu ◽  
Sorin Moga ◽  
Victor Andrei ◽  
...  

In this study, the surface of commercially pure titanium (Cp-Ti) was covered by a 21–95 µm-thick aluminum oxide layer using plasma electrolytic oxidation. Coating characterization revealed the formation of nodular and granular α- and γ-Al2O3 phases with minor amounts of TiAl2O5 and Na2Ti4O9 which yielded a maximum 49.0 GPa hardness and 50 N adhesive critical load. The corrosion resistance behavior in 3.5 wt.% NaCl solution of all plasma electrolytic oxidation (PEO) coatings was found to be two orders of magnitude higher compared to bare Ti substrate.


Sign in / Sign up

Export Citation Format

Share Document